#!/usr/bin/env python3 from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, AutoencoderKL import time from pytorch_lightning import seed_everything import os from huggingface_hub import HfApi # from compel import Compel import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO api = HfApi() start_time = time.time() use_refiner = bool(int(sys.argv[1])) use_diffusers = True vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, force_upcast=True) pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True) print(time.time() - start_time) pipe.to("cuda") def download_image(url): response = requests.get(url) return Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((1024, 1024)) mask_image = download_image(mask_url).resize((1024, 1024)) if use_refiner: start_time = time.time() refiner = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16") refiner.to("cuda") # refiner.enable_sequential_cpu_offload() prompt = "A majestic tiger sitting on a bench" steps = 50 seed = 3 denoising_end = None seed_everything(seed) start_time = time.time() image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=steps, denoising_end=denoising_end, strength=0.80, output_type="latent").images print(time.time() - start_time) if use_refiner: image = refiner(prompt=prompt, image=image, mask_image=mask_image, num_inference_steps=steps, denoising_start=denoising_end).images[0] file_name = f"aaa_1" path = os.path.join(Path.home(), "images", "ediffi_sdxl", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")