|
|
|
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler |
|
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, AutoencoderKL |
|
import time |
|
from pytorch_lightning import seed_everything |
|
import os |
|
from huggingface_hub import HfApi |
|
|
|
import torch |
|
import sys |
|
from pathlib import Path |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
api = HfApi() |
|
start_time = time.time() |
|
|
|
use_refiner = bool(int(sys.argv[1])) |
|
use_diffusers = True |
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, force_upcast=True) |
|
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True) |
|
print(time.time() - start_time) |
|
pipe.to("cuda") |
|
|
|
def download_image(url): |
|
response = requests.get(url) |
|
return Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
|
|
init_image = download_image(img_url).resize((1024, 1024)) |
|
mask_image = download_image(mask_url).resize((1024, 1024)) |
|
|
|
if use_refiner: |
|
start_time = time.time() |
|
refiner = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16") |
|
refiner.to("cuda") |
|
|
|
|
|
prompt = "A majestic tiger sitting on a bench" |
|
steps = 50 |
|
seed = 3 |
|
denoising_end = None |
|
|
|
seed_everything(seed) |
|
start_time = time.time() |
|
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=steps, denoising_end=denoising_end, strength=0.80, output_type="latent").images |
|
print(time.time() - start_time) |
|
|
|
if use_refiner: |
|
image = refiner(prompt=prompt, image=image, mask_image=mask_image, num_inference_steps=steps, denoising_start=denoising_end).images[0] |
|
|
|
file_name = f"aaa_1" |
|
path = os.path.join(Path.home(), "images", "ediffi_sdxl", f"{file_name}.png") |
|
image.save(path) |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path.split("/")[-1], |
|
repo_id="patrickvonplaten/images", |
|
repo_type="dataset", |
|
) |
|
print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png") |
|
|