#!/usr/bin/env python3 | |
import torch | |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, KDPM2AncestralDiscreteScheduler | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", | |
torch_dtype=torch.float16 | |
) | |
base = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True | |
) | |
scheduler = KDPM2AncestralDiscreteScheduler.from_config(base.scheduler.config, use_karras_sigmas=True) | |
base.scheduler = scheduler | |
base.to("cuda") | |
def print_step(s, t, latents): | |
print(s) | |
generator=torch.manual_seed(1111) | |
images = base( | |
prompt="LOVE", | |
num_inference_steps=10, | |
generator=generator, | |
callback=print_step | |
).images | |