File size: 1,377 Bytes
6c27fdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#!/usr/bin/env python3
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline, DPMSolverSDEScheduler
import hf_image_uploader as hiu
import torch

path = "stabilityai/stable-diffusion-xl-base-1.0"
vae_path = "madebyollin/sdxl-vae-fp16-fix"

# vae = AutoencoderKL.from_pretrained(vae_path, torch_dtype=torch.float16)
# pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16, vae=vae, variant="fp16", use_safetensors=True, local_files_only=True, add_watermarker=False)
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, algorithm_type="sde-dpmsolver++")
pipe.to("cuda")

prompt = "An astronaut riding a green horse on Mars"
steps = 20

for i in range(2):
    width = 512 * (i + 1)
    height = 512 * (i + 1)
    image = pipe(prompt=prompt, width=width, height=height, num_inference_steps=steps).images[0]
    hiu.upload(image, "patrickvonplaten/images")

pipe.scheduler = DPMSolverSDEScheduler.from_config(pipe.scheduler.config, algorithm_type="sde-dpmsolver++")

for i in range(2):
    width = 512 * (i + 1)
    height = 512 * (i + 1)
    image = pipe(prompt=prompt, width=width, height=height, num_inference_steps=steps).images[0]
    hiu.upload(image, "patrickvonplaten/images")