FLUX.1-vae / handler.py
hlky's picture
hlky HF staff
Upload folder using huggingface_hub
c7628b9 verified
raw
history blame
2.93 kB
from typing import Dict, List, Any
import torch
from base64 import b64decode
from diffusers import AutoencoderKL
from diffusers.image_processor import VaeImageProcessor
class EndpointHandler:
def __init__(self, path=""):
self.device = "cuda"
self.dtype = torch.bfloat16
self.vae = (
AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype)
.to(self.device, self.dtype)
.eval()
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@staticmethod
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
return latents
@torch.no_grad()
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
"""
tensor = data["inputs"]
tensor = b64decode(tensor.encode("utf-8"))
parameters = data.get("parameters", {})
if "shape" not in parameters:
raise ValueError("Expected `shape` in parameters.")
if "dtype" not in parameters:
raise ValueError("Expected `dtype` in parameters.")
if "height" not in parameters:
raise ValueError("Expected `height` in parameters.")
if "width" not in parameters:
raise ValueError("Expected `width` in parameters.")
DTYPE_MAP = {
"float16": torch.float16,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
shape = parameters.get("shape")
dtype = DTYPE_MAP.get(parameters.get("dtype"))
height = parameters.get("height")
width = parameters.get("width")
tensor = torch.frombuffer(bytearray(tensor), dtype=dtype).reshape(shape)
tensor = tensor.to(self.device, self.dtype)
tensor = self._unpack_latents(tensor, height, width, self.vae_scale_factor)
tensor = (
tensor / self.vae.config.scaling_factor
) + self.vae.config.shift_factor
with torch.no_grad():
image = self.vae.decode(tensor, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type="pil")
return image[0]