|
from typing import Dict, List, Any |
|
import torch |
|
from base64 import b64decode |
|
from diffusers import AutoencoderKL |
|
from diffusers.image_processor import VaeImageProcessor |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.device = "cuda" |
|
self.dtype = torch.bfloat16 |
|
self.vae = ( |
|
AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype) |
|
.to(self.device, self.dtype) |
|
.eval() |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
@staticmethod |
|
def _unpack_latents(latents, height, width, vae_scale_factor): |
|
batch_size, num_patches, channels = latents.shape |
|
|
|
|
|
|
|
height = 2 * (int(height) // (vae_scale_factor * 2)) |
|
width = 2 * (int(width) // (vae_scale_factor * 2)) |
|
|
|
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) |
|
latents = latents.permute(0, 3, 1, 4, 2, 5) |
|
|
|
latents = latents.reshape(batch_size, channels // (2 * 2), height, width) |
|
|
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
""" |
|
tensor = data["inputs"] |
|
tensor = b64decode(tensor.encode("utf-8")) |
|
parameters = data.get("parameters", {}) |
|
if "shape" not in parameters: |
|
raise ValueError("Expected `shape` in parameters.") |
|
if "dtype" not in parameters: |
|
raise ValueError("Expected `dtype` in parameters.") |
|
if "height" not in parameters: |
|
raise ValueError("Expected `height` in parameters.") |
|
if "width" not in parameters: |
|
raise ValueError("Expected `width` in parameters.") |
|
|
|
DTYPE_MAP = { |
|
"float16": torch.float16, |
|
"float32": torch.float32, |
|
"bfloat16": torch.bfloat16, |
|
} |
|
|
|
shape = parameters.get("shape") |
|
dtype = DTYPE_MAP.get(parameters.get("dtype")) |
|
height = parameters.get("height") |
|
width = parameters.get("width") |
|
|
|
tensor = torch.frombuffer(bytearray(tensor), dtype=dtype).reshape(shape) |
|
|
|
tensor = tensor.to(self.device, self.dtype) |
|
|
|
tensor = self._unpack_latents(tensor, height, width, self.vae_scale_factor) |
|
tensor = ( |
|
tensor / self.vae.config.scaling_factor |
|
) + self.vae.config.shift_factor |
|
|
|
with torch.no_grad(): |
|
image = self.vae.decode(tensor, return_dict=False)[0] |
|
|
|
image = self.image_processor.postprocess(image, output_type="pil") |
|
|
|
return image[0] |
|
|