File size: 2,750 Bytes
a61b21a 0bbe203 a61b21a b04c74a b7a6b7f a61b21a 27114c0 b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f de8c55c a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f de8c55c b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f a61b21a b7a6b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
base_model_relation: quantized
tags:
- quantization
---
# Visual comparison of Flux-dev model outputs using BF16 and BnB 8-bit quantization
<td style="text-align: center;">
BF16<br>
<medium-zoom background="rgba(0,0,0,.7)"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/quantization-backends-diffusers/combined_flux-dev_bf16_combined.png" alt="Flux-dev output with BF16: Baroque, Futurist, Noir styles"></medium-zoom>
</td>
<td style="text-align: center;">
BnB 4-bit<br>
<medium-zoom background="rgba(0,0,0,.7)"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/quantization-backends-diffusers/combined_flux-dev_bnb_4bit_combined.png" alt="Flux-dev output with BnB 4-bit: Baroque, Futurist, Noir styles"></medium-zoom>
</td>
# Usage with Diffusers
To use this quantized FLUX.1 [dev] checkpoint, you need to install the 🧨 diffusers and bitsandbytes library:
```
pip install -U diffusers
pip install -U bitsandbytes
```
After installing the required library, you can run the following script:
```python
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"diffusers/FLUX.1-dev-bnb-4bit",
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
prompt = "Baroque style, a lavish palace interior with ornate gilded ceilings, intricate tapestries, and dramatic lighting over a grand staircase."
pipe_kwargs = {
"prompt": prompt,
"height": 1024,
"width": 1024,
"guidance_scale": 3.5,
"num_inference_steps": 50,
"max_sequence_length": 512,
}
image = pipe(
**pipe_kwargs, generator=torch.manual_seed(0),
).images[0]
image.save("flux.png")
```
# How to generate this quantized checkpoint ?
This checkpoint was created with the following script using "black-forest-labs/FLUX.1-dev" checkpoint:
```python
import torch
from diffusers import FluxPipeline
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers.quantizers import PipelineQuantizationConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
pipeline_quant_config = PipelineQuantizationConfig(
quant_mapping={
"transformer": DiffusersBitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16),
"text_encoder_2": TransformersBitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16),
}
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16
)
pipe.save_pretrained("FLUX.1-dev-bnb-4bit")
``` |