End of training
Browse files- README.md +76 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: deberta-v3-large-imdb-v0.2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# deberta-v3-large-imdb-v0.2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2233
|
24 |
+
- Accuracy: 0.9653
|
25 |
+
- F1: 0.9654
|
26 |
+
- Precision: 0.9637
|
27 |
+
- Recall: 0.9670
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: cosine
|
52 |
+
- lr_scheduler_warmup_ratio: 0.2
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| 0.2279 | 1.0 | 3125 | 0.1466 | 0.9603 | 0.9599 | 0.9693 | 0.9506 |
|
60 |
+
| 0.2689 | 2.0 | 6250 | 0.1929 | 0.9550 | 0.9546 | 0.9626 | 0.9467 |
|
61 |
+
| 0.1728 | 3.0 | 9375 | 0.1807 | 0.9584 | 0.9579 | 0.9697 | 0.9463 |
|
62 |
+
| 0.1937 | 4.0 | 12500 | 0.1734 | 0.9435 | 0.9457 | 0.9102 | 0.9841 |
|
63 |
+
| 0.2044 | 5.0 | 15625 | 0.2102 | 0.9510 | 0.9523 | 0.9272 | 0.9788 |
|
64 |
+
| 0.0484 | 6.0 | 18750 | 0.2134 | 0.9593 | 0.9599 | 0.9448 | 0.9756 |
|
65 |
+
| 0.0336 | 7.0 | 21875 | 0.2278 | 0.9610 | 0.9614 | 0.9524 | 0.9706 |
|
66 |
+
| 0.0704 | 8.0 | 25000 | 0.2039 | 0.9648 | 0.9651 | 0.9581 | 0.9721 |
|
67 |
+
| 0.0004 | 9.0 | 28125 | 0.2241 | 0.9656 | 0.9657 | 0.9640 | 0.9673 |
|
68 |
+
| 0.0004 | 10.0 | 31250 | 0.2233 | 0.9653 | 0.9654 | 0.9637 | 0.9670 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.39.2
|
74 |
+
- Pytorch 2.2.0+cu121
|
75 |
+
- Datasets 2.18.0
|
76 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1740304440
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18e8b0476a5dd4f2604fa94412b760c064403e4d246d2c6df5373190245d443a
|
3 |
size 1740304440
|