--- license: apache-2.0 library_name: peft tags: - mistral datasets: - ehartford/dolphin - garage-bAInd/Open-Platypus inference: false pipeline_tag: text-generation base_model: mistralai/Mistral-7B-v0.1 ---
# Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. It is geared towards generalist instruction-following capabilities. ## Model Details This model was built via parameter-efficient finetuning of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1 hour on Google Colab. - **Developed by:** Daniel Furman - **Model type:** Decoder-only - **Language(s) (NLP):** English - **License:** Yi model license - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ## Model Sources - **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb) ## Evaluation Results | Metric | Value | |-----------------------|-------| | MMLU (5-shot) | Coming | | ARC (25-shot) | Coming | | HellaSwag (10-shot) | Coming | | TruthfulQA (0-shot) | Coming | | Avg. | Coming | We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). ## Basic Usage ```python !pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece import torch from peft import PeftModel, PeftConfig from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) ``` ```python peft_model_id = "dfurman/Yi-6B-instruct-v0.1" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = AutoTokenizer.from_pretrained( peft_model_id, use_fast=True, trust_remote_code=True, ) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, ) model = PeftModel.from_pretrained( model, peft_model_id ) ``` ```python messages = [ {"role": "system", "content": "You are a helpful assistant. Respond as briefly as possible."}, {"role": "user", "content": "Tell me a recipe for a mai tai."}, ] print("\n\n*** Prompt:") prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) print(prompt) print("\n\n*** Generate:") input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda() with torch.autocast("cuda", dtype=torch.bfloat16): output = model.generate( input_ids=input_ids, max_new_tokens=1024, do_sample=True, temperature=0.7, return_dict_in_generate=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, repetition_penalty=1.2, no_repeat_ngram_size=5, ) response = tokenizer.decode( output["sequences"][0][len(input_ids[0]):], skip_special_tokens=True ) print(response) ```
Output **Prompt**: <|im_start|>system You are a helpful assistant. Respond as briefly as possible.<|im_end|> <|im_start|>user Tell me a recipe for a mai tai.<|im_end|> <|im_start|>assistant **Generation**: Here's one simple version of the classic Mai Tai cocktail: 1 oz White Rum (Bacardi, Don Papa, etc.) ➕ ½ oz Coconut Cream Liqueur (Malibu or Coco Lopez) 2 tsp Simple Syrup ➕ Dash Orange Bitters 3-4 Ice Cubes Shake all ingredients in a shaker filled with ice until well chilled and strain into an old fashioned glass over fresh crushed ice. Garnish with mint leaves if desired. Enjoy!
## Speeds, Sizes, Times | runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) | |:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:| | 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 | ## Training It took ~3 hours to train 3 epochs on 1x A100 (40 GB SXM). Prompt format: This model uses the same prompt format as [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1). This model does **not** expect a system prompt. ``` [INST] {prompt} [/INST] ``` ## Training Hyperparameters We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets. The following `TrainingArguments` config was used: - num_train_epochs = 1 - auto_find_batch_size = True - gradient_accumulation_steps = 1 - optim = "paged_adamw_32bit" - save_strategy = "epoch" - learning_rate = 3e-4 - lr_scheduler_type = "cosine" - warmup_ratio = 0.03 - logging_strategy = "steps" - logging_steps = 25 - bf16 = True The following `bitsandbytes` quantization config was used: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ## Model Card Contact dryanfurman at gmail ## Framework versions - PEFT 0.6.0.dev0