Update README.md
Browse files
README.md
CHANGED
|
@@ -44,53 +44,6 @@ This instruction-following llm was built via parameter-efficient QLoRA finetunin
|
|
| 44 |
|
| 45 |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
| 46 |
|
| 47 |
-
## Training
|
| 48 |
-
|
| 49 |
-
It took ~1 hour to train 1 epoch on 1x A100.
|
| 50 |
-
|
| 51 |
-
Prompt format:
|
| 52 |
-
This model (and all my future releases) uses the [ChatML](https://huggingface.co/docs/transformers/chat_templating#what-template-should-i-use) prompt format, which was developed by OpenAI.
|
| 53 |
-
|
| 54 |
-
```
|
| 55 |
-
<|im_start|>system
|
| 56 |
-
You are a helpful assistant.<|im_end|>
|
| 57 |
-
<|im_start|>user
|
| 58 |
-
{prompt}<|im_end|>
|
| 59 |
-
<|im_start|>assistant
|
| 60 |
-
```
|
| 61 |
-
|
| 62 |
-
### Training Hyperparameters
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
|
| 66 |
-
|
| 67 |
-
The following `TrainingArguments` config was used:
|
| 68 |
-
|
| 69 |
-
- num_train_epochs = 1
|
| 70 |
-
- auto_find_batch_size = True
|
| 71 |
-
- gradient_accumulation_steps = 1
|
| 72 |
-
- optim = "paged_adamw_32bit"
|
| 73 |
-
- save_strategy = "epoch"
|
| 74 |
-
- learning_rate = 3e-4
|
| 75 |
-
- lr_scheduler_type = "cosine"
|
| 76 |
-
- warmup_ratio = 0.03
|
| 77 |
-
- logging_strategy = "steps"
|
| 78 |
-
- logging_steps = 25
|
| 79 |
-
- bf16 = True
|
| 80 |
-
|
| 81 |
-
The following `bitsandbytes` quantization config was used:
|
| 82 |
-
|
| 83 |
-
- quant_method: bitsandbytes
|
| 84 |
-
- load_in_8bit: False
|
| 85 |
-
- load_in_4bit: True
|
| 86 |
-
- llm_int8_threshold: 6.0
|
| 87 |
-
- llm_int8_skip_modules: None
|
| 88 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
| 89 |
-
- llm_int8_has_fp16_weight: False
|
| 90 |
-
- bnb_4bit_quant_type: nf4
|
| 91 |
-
- bnb_4bit_use_double_quant: False
|
| 92 |
-
- bnb_4bit_compute_dtype: bfloat16
|
| 93 |
-
|
| 94 |
## How to Get Started with the Model
|
| 95 |
|
| 96 |
Use the code below to get started with the model.
|
|
@@ -180,6 +133,53 @@ Remember, when writing emails, always keep in mind your audience and their prefe
|
|
| 180 |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
| 181 |
| 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 |
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
## Model Card Contact
|
| 185 |
|
|
|
|
| 44 |
|
| 45 |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
## How to Get Started with the Model
|
| 48 |
|
| 49 |
Use the code below to get started with the model.
|
|
|
|
| 133 |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
| 134 |
| 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 |
|
| 135 |
|
| 136 |
+
## Training
|
| 137 |
+
|
| 138 |
+
It took ~1 hour to train 1 epoch on 1x A100.
|
| 139 |
+
|
| 140 |
+
Prompt format:
|
| 141 |
+
This model (and all my future releases) uses the [ChatML](https://huggingface.co/docs/transformers/chat_templating#what-template-should-i-use) prompt format, which was developed by OpenAI.
|
| 142 |
+
|
| 143 |
+
```
|
| 144 |
+
<|im_start|>system
|
| 145 |
+
You are a helpful assistant.<|im_end|>
|
| 146 |
+
<|im_start|>user
|
| 147 |
+
{prompt}<|im_end|>
|
| 148 |
+
<|im_start|>assistant
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
+
### Training Hyperparameters
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
|
| 155 |
+
|
| 156 |
+
The following `TrainingArguments` config was used:
|
| 157 |
+
|
| 158 |
+
- num_train_epochs = 1
|
| 159 |
+
- auto_find_batch_size = True
|
| 160 |
+
- gradient_accumulation_steps = 1
|
| 161 |
+
- optim = "paged_adamw_32bit"
|
| 162 |
+
- save_strategy = "epoch"
|
| 163 |
+
- learning_rate = 3e-4
|
| 164 |
+
- lr_scheduler_type = "cosine"
|
| 165 |
+
- warmup_ratio = 0.03
|
| 166 |
+
- logging_strategy = "steps"
|
| 167 |
+
- logging_steps = 25
|
| 168 |
+
- bf16 = True
|
| 169 |
+
|
| 170 |
+
The following `bitsandbytes` quantization config was used:
|
| 171 |
+
|
| 172 |
+
- quant_method: bitsandbytes
|
| 173 |
+
- load_in_8bit: False
|
| 174 |
+
- load_in_4bit: True
|
| 175 |
+
- llm_int8_threshold: 6.0
|
| 176 |
+
- llm_int8_skip_modules: None
|
| 177 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
| 178 |
+
- llm_int8_has_fp16_weight: False
|
| 179 |
+
- bnb_4bit_quant_type: nf4
|
| 180 |
+
- bnb_4bit_use_double_quant: False
|
| 181 |
+
- bnb_4bit_compute_dtype: bfloat16
|
| 182 |
+
|
| 183 |
|
| 184 |
## Model Card Contact
|
| 185 |
|