Update README.md
Browse files
README.md
CHANGED
@@ -44,53 +44,6 @@ This instruction-following llm was built via parameter-efficient QLoRA finetunin
|
|
44 |
|
45 |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
46 |
|
47 |
-
## Training
|
48 |
-
|
49 |
-
It took ~1 hour to train 1 epoch on 1x A100.
|
50 |
-
|
51 |
-
Prompt format:
|
52 |
-
This model (and all my future releases) uses the [ChatML](https://huggingface.co/docs/transformers/chat_templating#what-template-should-i-use) prompt format, which was developed by OpenAI.
|
53 |
-
|
54 |
-
```
|
55 |
-
<|im_start|>system
|
56 |
-
You are a helpful assistant.<|im_end|>
|
57 |
-
<|im_start|>user
|
58 |
-
{prompt}<|im_end|>
|
59 |
-
<|im_start|>assistant
|
60 |
-
```
|
61 |
-
|
62 |
-
### Training Hyperparameters
|
63 |
-
|
64 |
-
|
65 |
-
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
|
66 |
-
|
67 |
-
The following `TrainingArguments` config was used:
|
68 |
-
|
69 |
-
- num_train_epochs = 1
|
70 |
-
- auto_find_batch_size = True
|
71 |
-
- gradient_accumulation_steps = 1
|
72 |
-
- optim = "paged_adamw_32bit"
|
73 |
-
- save_strategy = "epoch"
|
74 |
-
- learning_rate = 3e-4
|
75 |
-
- lr_scheduler_type = "cosine"
|
76 |
-
- warmup_ratio = 0.03
|
77 |
-
- logging_strategy = "steps"
|
78 |
-
- logging_steps = 25
|
79 |
-
- bf16 = True
|
80 |
-
|
81 |
-
The following `bitsandbytes` quantization config was used:
|
82 |
-
|
83 |
-
- quant_method: bitsandbytes
|
84 |
-
- load_in_8bit: False
|
85 |
-
- load_in_4bit: True
|
86 |
-
- llm_int8_threshold: 6.0
|
87 |
-
- llm_int8_skip_modules: None
|
88 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
89 |
-
- llm_int8_has_fp16_weight: False
|
90 |
-
- bnb_4bit_quant_type: nf4
|
91 |
-
- bnb_4bit_use_double_quant: False
|
92 |
-
- bnb_4bit_compute_dtype: bfloat16
|
93 |
-
|
94 |
## How to Get Started with the Model
|
95 |
|
96 |
Use the code below to get started with the model.
|
@@ -180,6 +133,53 @@ Remember, when writing emails, always keep in mind your audience and their prefe
|
|
180 |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
181 |
| 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 |
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
## Model Card Contact
|
185 |
|
|
|
44 |
|
45 |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
## How to Get Started with the Model
|
48 |
|
49 |
Use the code below to get started with the model.
|
|
|
133 |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
134 |
| 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 |
|
135 |
|
136 |
+
## Training
|
137 |
+
|
138 |
+
It took ~1 hour to train 1 epoch on 1x A100.
|
139 |
+
|
140 |
+
Prompt format:
|
141 |
+
This model (and all my future releases) uses the [ChatML](https://huggingface.co/docs/transformers/chat_templating#what-template-should-i-use) prompt format, which was developed by OpenAI.
|
142 |
+
|
143 |
+
```
|
144 |
+
<|im_start|>system
|
145 |
+
You are a helpful assistant.<|im_end|>
|
146 |
+
<|im_start|>user
|
147 |
+
{prompt}<|im_end|>
|
148 |
+
<|im_start|>assistant
|
149 |
+
```
|
150 |
+
|
151 |
+
### Training Hyperparameters
|
152 |
+
|
153 |
+
|
154 |
+
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
|
155 |
+
|
156 |
+
The following `TrainingArguments` config was used:
|
157 |
+
|
158 |
+
- num_train_epochs = 1
|
159 |
+
- auto_find_batch_size = True
|
160 |
+
- gradient_accumulation_steps = 1
|
161 |
+
- optim = "paged_adamw_32bit"
|
162 |
+
- save_strategy = "epoch"
|
163 |
+
- learning_rate = 3e-4
|
164 |
+
- lr_scheduler_type = "cosine"
|
165 |
+
- warmup_ratio = 0.03
|
166 |
+
- logging_strategy = "steps"
|
167 |
+
- logging_steps = 25
|
168 |
+
- bf16 = True
|
169 |
+
|
170 |
+
The following `bitsandbytes` quantization config was used:
|
171 |
+
|
172 |
+
- quant_method: bitsandbytes
|
173 |
+
- load_in_8bit: False
|
174 |
+
- load_in_4bit: True
|
175 |
+
- llm_int8_threshold: 6.0
|
176 |
+
- llm_int8_skip_modules: None
|
177 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
178 |
+
- llm_int8_has_fp16_weight: False
|
179 |
+
- bnb_4bit_quant_type: nf4
|
180 |
+
- bnb_4bit_use_double_quant: False
|
181 |
+
- bnb_4bit_compute_dtype: bfloat16
|
182 |
+
|
183 |
|
184 |
## Model Card Contact
|
185 |
|