dfurman commited on
Commit
e8a9e4b
·
1 Parent(s): ad5a514

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -8
README.md CHANGED
@@ -23,8 +23,6 @@ General instruction-following llm finetuned from [mistralai/Mistral-7B-v0.1](htt
23
 
24
  ## Model Details
25
 
26
- ### Model Description
27
-
28
  This instruction-following llm was built via parameter-efficient QLoRA finetuning of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1 hour on Google Colab.
29
 
30
  - **Developed by:** Daniel Furman
@@ -33,11 +31,11 @@ This instruction-following llm was built via parameter-efficient QLoRA finetunin
33
  - **License:** Yi model license
34
  - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
35
 
36
- ### Model Sources
37
 
38
  - **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb)
39
 
40
- ### Evaluation
41
 
42
  | Metric | Value |
43
  |-----------------------|-------|
@@ -49,9 +47,9 @@ This instruction-following llm was built via parameter-efficient QLoRA finetunin
49
 
50
  We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
51
 
52
- ## How to Get Started with the Model
53
 
54
- Use the code below to get started with the model.
55
 
56
  ```python
57
  !pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece
@@ -132,7 +130,7 @@ Remember, when writing emails, always keep in mind your audience and their prefe
132
 
133
  </details>
134
 
135
- ### Speeds, Sizes, Times
136
 
137
  | runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
138
  |:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
@@ -153,7 +151,7 @@ You are a helpful assistant.<|im_end|>
153
  <|im_start|>assistant
154
  ```
155
 
156
- ### Training Hyperparameters
157
 
158
 
159
  We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
 
23
 
24
  ## Model Details
25
 
 
 
26
  This instruction-following llm was built via parameter-efficient QLoRA finetuning of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1 hour on Google Colab.
27
 
28
  - **Developed by:** Daniel Furman
 
31
  - **License:** Yi model license
32
  - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
33
 
34
+ ## Model Sources
35
 
36
  - **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb)
37
 
38
+ ## Evaluation Results
39
 
40
  | Metric | Value |
41
  |-----------------------|-------|
 
47
 
48
  We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
49
 
50
+ ## Basic Usage
51
 
52
+ *Note*: Use the code below to get started with the sft models herein, as ran on 1x A100.
53
 
54
  ```python
55
  !pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece
 
130
 
131
  </details>
132
 
133
+ ## Speeds, Sizes, Times
134
 
135
  | runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
136
  |:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
 
151
  <|im_start|>assistant
152
  ```
153
 
154
+ ## Training Hyperparameters
155
 
156
 
157
  We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.