Update README.md
Browse files
README.md
CHANGED
@@ -23,8 +23,6 @@ General instruction-following llm finetuned from [mistralai/Mistral-7B-v0.1](htt
|
|
23 |
|
24 |
## Model Details
|
25 |
|
26 |
-
### Model Description
|
27 |
-
|
28 |
This instruction-following llm was built via parameter-efficient QLoRA finetuning of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1 hour on Google Colab.
|
29 |
|
30 |
- **Developed by:** Daniel Furman
|
@@ -33,11 +31,11 @@ This instruction-following llm was built via parameter-efficient QLoRA finetunin
|
|
33 |
- **License:** Yi model license
|
34 |
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
35 |
|
36 |
-
|
37 |
|
38 |
- **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb)
|
39 |
|
40 |
-
|
41 |
|
42 |
| Metric | Value |
|
43 |
|-----------------------|-------|
|
@@ -49,9 +47,9 @@ This instruction-following llm was built via parameter-efficient QLoRA finetunin
|
|
49 |
|
50 |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
51 |
|
52 |
-
##
|
53 |
|
54 |
-
Use the code below to get started with the
|
55 |
|
56 |
```python
|
57 |
!pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece
|
@@ -132,7 +130,7 @@ Remember, when writing emails, always keep in mind your audience and their prefe
|
|
132 |
|
133 |
</details>
|
134 |
|
135 |
-
|
136 |
|
137 |
| runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
|
138 |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
@@ -153,7 +151,7 @@ You are a helpful assistant.<|im_end|>
|
|
153 |
<|im_start|>assistant
|
154 |
```
|
155 |
|
156 |
-
|
157 |
|
158 |
|
159 |
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
|
|
|
23 |
|
24 |
## Model Details
|
25 |
|
|
|
|
|
26 |
This instruction-following llm was built via parameter-efficient QLoRA finetuning of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1 hour on Google Colab.
|
27 |
|
28 |
- **Developed by:** Daniel Furman
|
|
|
31 |
- **License:** Yi model license
|
32 |
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
33 |
|
34 |
+
## Model Sources
|
35 |
|
36 |
- **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb)
|
37 |
|
38 |
+
## Evaluation Results
|
39 |
|
40 |
| Metric | Value |
|
41 |
|-----------------------|-------|
|
|
|
47 |
|
48 |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
49 |
|
50 |
+
## Basic Usage
|
51 |
|
52 |
+
*Note*: Use the code below to get started with the sft models herein, as ran on 1x A100.
|
53 |
|
54 |
```python
|
55 |
!pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece
|
|
|
130 |
|
131 |
</details>
|
132 |
|
133 |
+
## Speeds, Sizes, Times
|
134 |
|
135 |
| runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
|
136 |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
|
|
151 |
<|im_start|>assistant
|
152 |
```
|
153 |
|
154 |
+
## Training Hyperparameters
|
155 |
|
156 |
|
157 |
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune llms on instruction-following datasets.
|