Update README.md
Browse files
README.md
CHANGED
@@ -1,205 +1,226 @@
|
|
1 |
---
|
|
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
base_model: mistralai/Mistral-7B-v0.1
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Shared by [optional]:** [More Information Needed]
|
22 |
-
- **Model type:** [More Information Needed]
|
23 |
-
- **Language(s) (NLP):** [More Information Needed]
|
24 |
-
- **License:** [More Information Needed]
|
25 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
-
|
27 |
-
### Model Sources [optional]
|
28 |
-
|
29 |
-
<!-- Provide the basic links for the model. -->
|
30 |
-
|
31 |
-
- **Repository:** [More Information Needed]
|
32 |
-
- **Paper [optional]:** [More Information Needed]
|
33 |
-
- **Demo [optional]:** [More Information Needed]
|
34 |
-
|
35 |
-
## Uses
|
36 |
-
|
37 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
-
|
39 |
-
### Direct Use
|
40 |
-
|
41 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
-
|
43 |
-
[More Information Needed]
|
44 |
-
|
45 |
-
### Downstream Use [optional]
|
46 |
-
|
47 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
-
|
49 |
-
[More Information Needed]
|
50 |
-
|
51 |
-
### Out-of-Scope Use
|
52 |
-
|
53 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
-
|
55 |
-
[More Information Needed]
|
56 |
-
|
57 |
-
## Bias, Risks, and Limitations
|
58 |
-
|
59 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
-
|
61 |
-
[More Information Needed]
|
62 |
-
|
63 |
-
### Recommendations
|
64 |
-
|
65 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
-
|
67 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
-
|
69 |
-
## How to Get Started with the Model
|
70 |
-
|
71 |
-
Use the code below to get started with the model.
|
72 |
-
|
73 |
-
[More Information Needed]
|
74 |
-
|
75 |
-
## Training Details
|
76 |
-
|
77 |
-
### Training Data
|
78 |
-
|
79 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
-
|
81 |
-
[More Information Needed]
|
82 |
-
|
83 |
-
### Training Procedure
|
84 |
-
|
85 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
-
|
87 |
-
#### Preprocessing [optional]
|
88 |
-
|
89 |
-
[More Information Needed]
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
-
|
96 |
-
#### Speeds, Sizes, Times [optional]
|
97 |
-
|
98 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
-
|
102 |
-
## Evaluation
|
103 |
-
|
104 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
-
|
106 |
-
### Testing Data, Factors & Metrics
|
107 |
-
|
108 |
-
#### Testing Data
|
109 |
-
|
110 |
-
<!-- This should link to a Data Card if possible. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
#### Factors
|
115 |
-
|
116 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Metrics
|
121 |
-
|
122 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
### Results
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Summary
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
## Model Examination [optional]
|
135 |
-
|
136 |
-
<!-- Relevant interpretability work for the model goes here -->
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
## Environmental Impact
|
141 |
-
|
142 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
-
|
144 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
-
|
146 |
-
- **Hardware Type:** [More Information Needed]
|
147 |
-
- **Hours used:** [More Information Needed]
|
148 |
-
- **Cloud Provider:** [More Information Needed]
|
149 |
-
- **Compute Region:** [More Information Needed]
|
150 |
-
- **Carbon Emitted:** [More Information Needed]
|
151 |
-
|
152 |
-
## Technical Specifications [optional]
|
153 |
-
|
154 |
-
### Model Architecture and Objective
|
155 |
-
|
156 |
-
[More Information Needed]
|
157 |
-
|
158 |
-
### Compute Infrastructure
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
|
|
|
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
|
170 |
-
## Citation [optional]
|
171 |
|
172 |
-
|
|
|
|
|
|
|
173 |
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
|
182 |
-
## Glossary [optional]
|
183 |
|
184 |
-
|
185 |
|
186 |
-
|
187 |
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
[More Information Needed]
|
195 |
|
196 |
## Model Card Contact
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
## Training procedure
|
202 |
-
|
203 |
|
204 |
### Framework versions
|
205 |
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
library_name: peft
|
4 |
+
tags:
|
5 |
+
- mistral
|
6 |
+
datasets:
|
7 |
+
- jondurbin/airoboros-2.2.1
|
8 |
+
inference: false
|
9 |
+
pipeline_tag: text-generation
|
10 |
base_model: mistralai/Mistral-7B-v0.1
|
11 |
---
|
12 |
|
13 |
+
<div align="center">
|
14 |
|
15 |
+
<img src="./logo.png" width="150px">
|
16 |
|
17 |
+
</div>
|
18 |
|
19 |
+
# Mistral-7B-Instruct-v0.1
|
20 |
|
21 |
+
The Mistral-7B-Instruct-v0.1 LLM is a pretrained generative text model with 7 billion parameters geared towards instruction-following capabilities.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
This model was built via parameter-efficient finetuning of the [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) base model on the [jondurbin/airoboros-2.2.1](https://huggingface.co/datasets/jondurbin/airoboros-2.2.1) dataset. Finetuning was executed on 1x A100 (40 GB SXM) for roughly 3 hours.
|
26 |
+
|
27 |
+
- **Developed by:** Daniel Furman
|
28 |
+
- **Model type:** Decoder-only
|
29 |
+
- **Language(s) (NLP):** English
|
30 |
+
- **License:** Apache 2.0
|
31 |
+
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
32 |
+
|
33 |
+
## Model Sources
|
34 |
+
|
35 |
+
- **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb)
|
36 |
+
|
37 |
+
## Evaluation Results
|
38 |
+
|
39 |
+
| Metric | Value |
|
40 |
+
|-----------------------|-------|
|
41 |
+
| MMLU (5-shot) | Coming |
|
42 |
+
| ARC (25-shot) | Coming |
|
43 |
+
| HellaSwag (10-shot) | Coming |
|
44 |
+
| TruthfulQA (0-shot) | Coming |
|
45 |
+
| Avg. | Coming |
|
46 |
+
|
47 |
+
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
48 |
+
|
49 |
+
## Basic Usage
|
50 |
+
|
51 |
+
<details>
|
52 |
+
|
53 |
+
<summary>Setup</summary>
|
54 |
+
|
55 |
+
```python
|
56 |
+
!pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece
|
57 |
+
|
58 |
+
import torch
|
59 |
+
from peft import PeftModel, PeftConfig
|
60 |
+
from transformers import (
|
61 |
+
AutoModelForCausalLM,
|
62 |
+
AutoTokenizer,
|
63 |
+
BitsAndBytesConfig,
|
64 |
+
)
|
65 |
+
```
|
66 |
|
67 |
+
```python
|
68 |
+
peft_model_id = "dfurman/Mistral-7B-Instruct-v0.1"
|
69 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
70 |
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
72 |
+
peft_model_id,
|
73 |
+
use_fast=True,
|
74 |
+
trust_remote_code=True,
|
75 |
+
)
|
76 |
+
bnb_config = BitsAndBytesConfig(
|
77 |
+
load_in_4bit=True,
|
78 |
+
bnb_4bit_quant_type="nf4",
|
79 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
80 |
+
)
|
81 |
+
model = AutoModelForCausalLM.from_pretrained(
|
82 |
+
config.base_model_name_or_path,
|
83 |
+
quantization_config=bnb_config,
|
84 |
+
device_map="auto",
|
85 |
+
trust_remote_code=True,
|
86 |
+
)
|
87 |
+
model = PeftModel.from_pretrained(
|
88 |
+
model,
|
89 |
+
peft_model_id
|
90 |
+
)
|
91 |
+
```
|
92 |
|
93 |
+
</details>
|
94 |
|
|
|
95 |
|
96 |
+
```python
|
97 |
+
messages = [
|
98 |
+
{"role": "user", "content": "Tell me a recipe for a mai tai."},
|
99 |
+
]
|
100 |
|
101 |
+
print("\n\n*** Prompt:")
|
102 |
+
prompt = tokenizer.apply_chat_template(
|
103 |
+
messages,
|
104 |
+
tokenize=False,
|
105 |
+
add_generation_prompt=True
|
106 |
+
)
|
107 |
+
print(prompt)
|
108 |
|
109 |
+
print("\n\n*** Generate:")
|
110 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
111 |
+
with torch.autocast("cuda", dtype=torch.bfloat16):
|
112 |
+
output = model.generate(
|
113 |
+
input_ids=input_ids,
|
114 |
+
max_new_tokens=1024,
|
115 |
+
do_sample=True,
|
116 |
+
temperature=0.7,
|
117 |
+
return_dict_in_generate=True,
|
118 |
+
eos_token_id=tokenizer.eos_token_id,
|
119 |
+
pad_token_id=tokenizer.pad_token_id,
|
120 |
+
repetition_penalty=1.2,
|
121 |
+
no_repeat_ngram_size=5,
|
122 |
+
)
|
123 |
+
|
124 |
+
response = tokenizer.decode(
|
125 |
+
output["sequences"][0][len(input_ids[0]):],
|
126 |
+
skip_special_tokens=True
|
127 |
+
)
|
128 |
+
print(response)
|
129 |
+
```
|
130 |
+
|
131 |
+
<details>
|
132 |
+
|
133 |
+
<summary>Output</summary>
|
134 |
+
|
135 |
+
**Prompt**:
|
136 |
+
```python
|
137 |
+
coming
|
138 |
+
```
|
139 |
+
|
140 |
+
**Generation**:
|
141 |
+
```python
|
142 |
+
coming
|
143 |
+
```
|
144 |
+
|
145 |
+
</details>
|
146 |
+
|
147 |
+
|
148 |
+
## Speeds, Sizes, Times
|
149 |
+
|
150 |
+
| runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
|
151 |
+
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
|
152 |
+
| 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 |
|
153 |
+
|
154 |
+
## Training
|
155 |
+
|
156 |
+
It took ~3 hours to train 3 epochs on 1x A100 (40 GB SXM).
|
157 |
+
|
158 |
+
### Prompt Format
|
159 |
+
|
160 |
+
This model was finetuned with the following format:
|
161 |
+
|
162 |
+
```python
|
163 |
+
tokenizer.chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST] ' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
|
164 |
+
```
|
165 |
+
|
166 |
+
|
167 |
+
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method. Here's an illustrative example:
|
168 |
+
|
169 |
+
```python
|
170 |
+
messages = [
|
171 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
172 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
173 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
174 |
+
]
|
175 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
176 |
+
print(prompt)
|
177 |
+
```
|
178 |
+
|
179 |
+
<details>
|
180 |
+
|
181 |
+
<summary>Output</summary>
|
182 |
|
183 |
+
```python
|
184 |
+
coming
|
185 |
+
```
|
186 |
+
</details>
|
187 |
|
188 |
+
### Training Hyperparameters
|
189 |
|
|
|
190 |
|
191 |
+
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
|
192 |
|
193 |
+
The following `TrainingArguments` config was used:
|
194 |
|
195 |
+
- num_train_epochs = 1
|
196 |
+
- auto_find_batch_size = True
|
197 |
+
- gradient_accumulation_steps = 1
|
198 |
+
- optim = "paged_adamw_32bit"
|
199 |
+
- save_strategy = "epoch"
|
200 |
+
- learning_rate = 3e-4
|
201 |
+
- lr_scheduler_type = "cosine"
|
202 |
+
- warmup_ratio = 0.03
|
203 |
+
- logging_strategy = "steps"
|
204 |
+
- logging_steps = 25
|
205 |
+
- bf16 = True
|
206 |
|
207 |
+
The following `bitsandbytes` quantization config was used:
|
208 |
|
209 |
+
- quant_method: bitsandbytes
|
210 |
+
- load_in_8bit: False
|
211 |
+
- load_in_4bit: True
|
212 |
+
- llm_int8_threshold: 6.0
|
213 |
+
- llm_int8_skip_modules: None
|
214 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
215 |
+
- llm_int8_has_fp16_weight: False
|
216 |
+
- bnb_4bit_quant_type: nf4
|
217 |
+
- bnb_4bit_use_double_quant: False
|
218 |
+
- bnb_4bit_compute_dtype: bfloat16
|
219 |
|
|
|
220 |
|
221 |
## Model Card Contact
|
222 |
|
223 |
+
dryanfurman at gmail
|
|
|
|
|
|
|
|
|
224 |
|
225 |
### Framework versions
|
226 |
|