Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ This model was built via parameter-efficient finetuning of the [mistralai/Mistra
|
|
32 |
|
33 |
## Model Sources
|
34 |
|
35 |
-
- **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/
|
36 |
|
37 |
## Evaluation Results
|
38 |
|
@@ -209,6 +209,8 @@ print(tokenizer.decode(input_ids[0]))
|
|
209 |
|
210 |
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
|
211 |
|
|
|
|
|
212 |
The following `TrainingArguments` config was used:
|
213 |
|
214 |
- num_train_epochs = 1
|
|
|
32 |
|
33 |
## Model Sources
|
34 |
|
35 |
+
- **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb)
|
36 |
|
37 |
## Evaluation Results
|
38 |
|
|
|
209 |
|
210 |
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
|
211 |
|
212 |
+
See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.
|
213 |
+
|
214 |
The following `TrainingArguments` config was used:
|
215 |
|
216 |
- num_train_epochs = 1
|