--- language: - en license: llama3 library_name: transformers tags: - orpo - llama 3 - rlhf - sft datasets: - mlabonne/orpo-dpo-mix-40k base_model: - meta-llama/Meta-Llama-3-70B --- # dfurman/Llama-3-70B-Orpo-v0.1 ![](https://i.imgur.com/ZHwzQvI.png) This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on 2k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). It's a successful fine-tune that follows the ChatML template! ## 🔎 Application This model uses a context window of 8k. It was trained with the ChatML template. ## 🏆 Evaluation ### Open LLM Leaderboard TBD. ## 📈 Training curves You can find the experiment on W&B at [this address](https://wandb.ai/dryanfurman/huggingface/runs/ojsbud95/workspace?nw=nwuserdryanfurman). ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "dfurman/Llama-3-70B-Orpo-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```