Text Generation
PEFT
Safetensors
mistral
conversational
Eval Results
dfurman commited on
Commit
eae039d
·
1 Parent(s): 61c5051

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -35,7 +35,7 @@ This model was built via parameter-efficient finetuning of the [meta-llama/Llama
35
 
36
  ## Model Sources
37
 
38
- - **Repository:** [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama/sft_Llama_2_13b_chat_hf_v0_1_peft.ipynb)
39
 
40
  ## Evaluation Results
41
 
@@ -202,7 +202,7 @@ print(tokenizer.decode(input_ids[0]))
202
 
203
  We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
204
 
205
- See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.
206
 
207
  The following `TrainingArguments` config was used:
208
 
 
35
 
36
  ## Model Sources
37
 
38
+ - **Repository:** [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama/sft_Llama_2_13B_Instruct_v0_2_peft.ipynb)
39
 
40
  ## Evaluation Results
41
 
 
202
 
203
  We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
204
 
205
+ See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama/sft_Llama_2_13B_Instruct_v0_2_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.
206
 
207
  The following `TrainingArguments` config was used:
208