Update README.md
Browse files
README.md
CHANGED
@@ -35,7 +35,7 @@ This model was built via parameter-efficient finetuning of the [meta-llama/Llama
|
|
35 |
|
36 |
## Model Sources
|
37 |
|
38 |
-
- **Repository:** [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama/
|
39 |
|
40 |
## Evaluation Results
|
41 |
|
@@ -202,7 +202,7 @@ print(tokenizer.decode(input_ids[0]))
|
|
202 |
|
203 |
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
|
204 |
|
205 |
-
See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/
|
206 |
|
207 |
The following `TrainingArguments` config was used:
|
208 |
|
|
|
35 |
|
36 |
## Model Sources
|
37 |
|
38 |
+
- **Repository:** [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama/sft_Llama_2_13B_Instruct_v0_2_peft.ipynb)
|
39 |
|
40 |
## Evaluation Results
|
41 |
|
|
|
202 |
|
203 |
We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
|
204 |
|
205 |
+
See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/llama/sft_Llama_2_13B_Instruct_v0_2_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.
|
206 |
|
207 |
The following `TrainingArguments` config was used:
|
208 |
|