Upload basic_inference_llama_2_13b_dolphin.ipynb
Browse files
assets/basic_inference_llama_2_13b_dolphin.ipynb
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "A100"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"id": "LqFeWyhye38d"
|
24 |
+
},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"!pip install -q -U huggingface_hub peft transformers torch accelerate"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"source": [
|
33 |
+
"!nvidia-smi\n"
|
34 |
+
],
|
35 |
+
"metadata": {
|
36 |
+
"id": "y5FkaLZcfAHm"
|
37 |
+
},
|
38 |
+
"execution_count": null,
|
39 |
+
"outputs": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"source": [
|
44 |
+
"import torch\n",
|
45 |
+
"from peft import PeftModel, PeftConfig\n",
|
46 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n"
|
47 |
+
],
|
48 |
+
"metadata": {
|
49 |
+
"id": "EKXLttEgf06g"
|
50 |
+
},
|
51 |
+
"execution_count": null,
|
52 |
+
"outputs": []
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"source": [
|
57 |
+
"!huggingface-cli login"
|
58 |
+
],
|
59 |
+
"metadata": {
|
60 |
+
"id": "Q_8EpxK4gUZI"
|
61 |
+
},
|
62 |
+
"execution_count": null,
|
63 |
+
"outputs": []
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"source": [
|
68 |
+
"peft_model_id = \"dfurman/llama-2-13b-dolphin-peft\"\n",
|
69 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
70 |
+
"\n",
|
71 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
72 |
+
" config.base_model_name_or_path,\n",
|
73 |
+
" use_auth_token=True\n",
|
74 |
+
")\n",
|
75 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
76 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
77 |
+
" config.base_model_name_or_path,\n",
|
78 |
+
" torch_dtype=torch.bfloat16,\n",
|
79 |
+
" device_map=\"auto\",\n",
|
80 |
+
" use_auth_token=True,\n",
|
81 |
+
")\n",
|
82 |
+
"\n",
|
83 |
+
"# Load the Lora model\n",
|
84 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
85 |
+
],
|
86 |
+
"metadata": {
|
87 |
+
"id": "AGxrbUqDgD8D"
|
88 |
+
},
|
89 |
+
"execution_count": null,
|
90 |
+
"outputs": []
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"source": [
|
95 |
+
"def llama_generate(\n",
|
96 |
+
" model: AutoModelForCausalLM,\n",
|
97 |
+
" tokenizer: AutoTokenizer,\n",
|
98 |
+
" prompt: str,\n",
|
99 |
+
" max_new_tokens: int = 128,\n",
|
100 |
+
" temperature: int = 1.0,\n",
|
101 |
+
") -> str:\n",
|
102 |
+
" \"\"\"\n",
|
103 |
+
" Initialize the pipeline\n",
|
104 |
+
" Uses Hugging Face GenerationConfig defaults\n",
|
105 |
+
" https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig\n",
|
106 |
+
" Args:\n",
|
107 |
+
" model (transformers.AutoModelForCausalLM): Falcon model for text generation\n",
|
108 |
+
" tokenizer (transformers.AutoTokenizer): Tokenizer for model\n",
|
109 |
+
" prompt (str): Prompt for text generation\n",
|
110 |
+
" max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.\n",
|
111 |
+
" temperature (float, optional): The value used to modulate the next token probabilities.\n",
|
112 |
+
" Defaults to 1.0\n",
|
113 |
+
" \"\"\"\n",
|
114 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
115 |
+
"\n",
|
116 |
+
" inputs = tokenizer(\n",
|
117 |
+
" [prompt],\n",
|
118 |
+
" return_tensors=\"pt\",\n",
|
119 |
+
" return_token_type_ids=False,\n",
|
120 |
+
" ).to(\n",
|
121 |
+
" device\n",
|
122 |
+
" ) # tokenize inputs, load on device\n",
|
123 |
+
"\n",
|
124 |
+
" # when running Torch modules in lower precision, it is best practice to use the torch.autocast context manager.\n",
|
125 |
+
" with torch.autocast(\"cuda\", dtype=torch.bfloat16):\n",
|
126 |
+
" response = model.generate(\n",
|
127 |
+
" **inputs,\n",
|
128 |
+
" max_new_tokens=max_new_tokens,\n",
|
129 |
+
" temperature=temperature,\n",
|
130 |
+
" return_dict_in_generate=True,\n",
|
131 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
132 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
133 |
+
" )\n",
|
134 |
+
"\n",
|
135 |
+
" decoded_output = tokenizer.decode(\n",
|
136 |
+
" response[\"sequences\"][0],\n",
|
137 |
+
" skip_special_tokens=True,\n",
|
138 |
+
" ) # grab output in natural language\n",
|
139 |
+
"\n",
|
140 |
+
" return decoded_output[len(prompt) :] # remove prompt from output\n"
|
141 |
+
],
|
142 |
+
"metadata": {
|
143 |
+
"id": "OQD_s1-egFjB"
|
144 |
+
},
|
145 |
+
"execution_count": null,
|
146 |
+
"outputs": []
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"source": [
|
151 |
+
"prompt = \"Your are a helpful AI assistant. Write me a numbered list of things to do in New York City.\\n\"\n",
|
152 |
+
"\n",
|
153 |
+
"response = llama_generate(\n",
|
154 |
+
" model,\n",
|
155 |
+
" tokenizer,\n",
|
156 |
+
" prompt,\n",
|
157 |
+
" max_new_tokens=150,\n",
|
158 |
+
" temperature=0.92,\n",
|
159 |
+
")\n",
|
160 |
+
"\n",
|
161 |
+
"print(response)"
|
162 |
+
],
|
163 |
+
"metadata": {
|
164 |
+
"id": "mKXUkc6BgjdL"
|
165 |
+
},
|
166 |
+
"execution_count": null,
|
167 |
+
"outputs": []
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"source": [],
|
172 |
+
"metadata": {
|
173 |
+
"id": "JOgPF_UdgnWr"
|
174 |
+
},
|
175 |
+
"execution_count": null,
|
176 |
+
"outputs": []
|
177 |
+
}
|
178 |
+
]
|
179 |
+
}
|