--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLMGUARD-roberta-11 results: [] --- # LLMGUARD-roberta-11 This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5908 - Accuracy: 0.8020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.203 | 1.0 | 1585 | 0.8223 | 0.7612 | | 0.696 | 2.0 | 3170 | 0.6380 | 0.7964 | | 0.6014 | 3.0 | 4755 | 0.6126 | 0.7997 | | 0.5652 | 4.0 | 6340 | 0.5943 | 0.8026 | | 0.5346 | 5.0 | 7925 | 0.5890 | 0.8018 | | 0.5118 | 6.0 | 9510 | 0.5860 | 0.8035 | | 0.4702 | 7.0 | 11095 | 0.5901 | 0.8034 | | 0.489 | 8.0 | 12680 | 0.5908 | 0.8020 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0