File size: 2,223 Bytes
86552a7
 
88040a8
86552a7
88040a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ceac46
 
 
88040a8
5ceac46
 
88040a8
 
5ceac46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88040a8
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---

license: apache-2.0
pipeline_tag: depth-estimation
---


# Prompt-Depth-Anything-Vits

## Introduction

Prompt Depth Anything is a high-resolution and accurate metric depth estimation method, with the following highlights:
- using prompting to unleash the power of depth foundation models, inspired by success of prompting in VLM and LLM foundation models.
- The widely available iPhone LiDAR is taken as the prompt, guiding the model to produce up to 4K resolution accurate metric depth.
- A scalable data pipeline is introduced to train the method.
- Prompt Depth Anything benefits downstream applications, including 3D reconstruction and generalized robotic grasping.


## Usage

```python

import requests

from PIL import Image

from transformers import PromptDepthAnythingForDepthEstimation, PromptDepthAnythingImageProcessor



url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/image.jpg?raw=true"

image = Image.open(requests.get(url, stream=True).raw)





image_processor = PromptDepthAnythingImageProcessor.from_pretrained("depth-anything/prompt-depth-anything-vits-hf")

model = PromptDepthAnythingForDepthEstimation.from_pretrained("depth-anything/prompt-depth-anything-vits-hf")



prompt_depth_url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/arkit_depth.png?raw=true"

prompt_depth = Image.open(requests.get(prompt_depth_url, stream=True).raw)



inputs = image_processor(images=image, return_tensors="pt", prompt_depth=prompt_depth)

with torch.no_grad():

    outputs = model(**inputs)

post_processed_output = image_processor.post_process_depth_estimation(

    outputs,

    target_sizes=[(image.height, image.width)],

)



predicted_depth = post_processed_output[0]["predicted_depth"] 

```

## Citation

If you find this project useful, please consider citing:

```bibtex

@inproceedings{lin2024promptda,

  title={Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation},

  author={Lin, Haotong and Peng, Sida and Chen, Jingxiao and Peng, Songyou and Sun, Jiaming and Liu, Minghuan and Bao, Hujun and Feng, Jiashi and Zhou, Xiaowei and Kang, Bingyi},

  journal={arXiv},

  year={2024}

}