File size: 9,083 Bytes
3d9d407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# """ GPTNeoX model configuration"""

# from ...configuration_utils import PretrainedConfig
# from ...utils import logging


# logger = logging.get_logger(__name__)

# GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
#     "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
#     # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
# }


# class GPTNeoXConfig(PretrainedConfig):
    # r"""
    # This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
    # GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
    # with the defaults will yield a similar configuration to that of the GPTNeoX
    # [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.

    # Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    # documentation from [`PretrainedConfig`] for more information.


    # Args:
    #     vocab_size (`int`, *optional*, defaults to 50432):
    #         Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
    #         `inputs_ids` passed when calling [`GPTNeoXModel`].
    #     hidden_size (`int`, *optional*, defaults to 6144):
    #         Dimension of the encoder layers and the pooler layer.
    #     num_hidden_layers (`int`, *optional*, defaults to 44):
    #         Number of hidden layers in the Transformer encoder.
    #     num_attention_heads (`int`, *optional*, defaults to 64):
    #         Number of attention heads for each attention layer in the Transformer encoder.
    #     intermediate_size (`int`, *optional*, defaults to 24576):
    #         Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    #     hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
    #         The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
    #         `"relu"`, `"selu"` and `"gelu_new"` are supported.
    #     rotary_pct (`float`, *optional*, defaults to 0.25):
    #         percentage of hidden dimensions to allocate to rotary embeddings
    #     rotary_emb_base (`int`, *optional*, defaults to 10000)
    #         base for computing rotary embeddings frequency
    #     attention_dropout (`float`, *optional*, defaults to 0.0):
    #         The dropout ratio probability of the attention score.
    #     hidden_dropout (`float`, *optional*, defaults to 0.0):
    #         The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
    #         hidden states.
    #     classifier_dropout (`float`, *optional*, defaults to 0.1):
    #         Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].

    #         The dropout ratio for the hidden layer.
    #     max_position_embeddings (`int`, *optional*, defaults to 2048):
    #         The maximum sequence length that this model might ever be used with. Typically set this to something large
    #         just in case (e.g., 512 or 1024 or 2048).
    #     initializer_range (`float`, *optional*, defaults to 1e-5):
    #         The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    #     layer_norm_eps (`float`, *optional*, defaults to 1e-12):
    #         The epsilon used by the layer normalization layers.
    #     use_cache (`bool`, *optional*, defaults to `True`):
    #         Whether or not the model should return the last key/values attentions (not used by all models). Only
    #         relevant if `config.is_decoder=True`.
    #     use_parallel_residual (`bool`, *optional*, defaults to `True`):
    #         Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
    #         speedup at large scales (e.g. 20B).
    #     rope_scaling (`Dict`, *optional*):
    #         Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
    #         strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
    #         is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
    #         `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
    #         these scaling strategies behave:
    #         https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
    #         experimental feature, subject to breaking API changes in future versions.

    #     Example:

    # ```python
    # >>> from transformers import GPTNeoXConfig, GPTNeoXModel

    # >>> # Initializing a GPTNeoX gpt-neox-20b style configuration
    # >>> configuration = GPTNeoXConfig()

    # >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
    # >>> model = GPTNeoXModel(configuration)  # doctest: +SKIP

    # >>> # Accessing the model configuration
    # >>> configuration = model.config  # doctest: +SKIP
    # ```"""
    # model_type = "gpt_neox"

from transformers import PretrainedConfig

class CustomConfig4(PretrainedConfig):
    model_type = "custom4"

    def __init__(
        self,
        vocab_size=50432,
        hidden_size=6144,
        num_hidden_layers=44,
        num_attention_heads=64,
        intermediate_size=24576,
        hidden_act="gelu",
        rotary_pct=0.25,
        rotary_emb_base=10000,
        attention_dropout=0.0,
        hidden_dropout=0.0,
        classifier_dropout=0.1,
        max_position_embeddings=2048,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        use_cache=True,
        bos_token_id=0,
        eos_token_id=2,
        tie_word_embeddings=False,
        use_parallel_residual=True,
        rope_scaling=None,
        **kwargs,
    ):
        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.rotary_pct = rotary_pct
        self.rotary_emb_base = rotary_emb_base
        self.attention_dropout = attention_dropout
        self.hidden_dropout = hidden_dropout
        self.classifier_dropout = classifier_dropout
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.use_cache = use_cache
        self.tie_word_embeddings = tie_word_embeddings
        self.use_parallel_residual = use_parallel_residual
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()

        if self.hidden_size % self.num_attention_heads != 0:
            raise ValueError(
                "The hidden size is not divisble by the number of attention heads! Make sure to update them!"
            )

    # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
            raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")