Commit
·
11a0baf
1
Parent(s):
5855d78
update model card README.md
Browse files
README.md
CHANGED
@@ -10,14 +10,6 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: req_mod_ner_modelv2
|
12 |
results: []
|
13 |
-
language:
|
14 |
-
- nl
|
15 |
-
widget:
|
16 |
-
- text: "De Oplossing ondersteunt het zoeken op de metadata van zaken, documenten en objecten en op gegevens uit de basisregistraties die gekoppeld zijn aan een zaak."
|
17 |
-
- text: "De Oplossing ondersteunt parafering en het plaatsen van een gecertificeerde elektronische handtekening."
|
18 |
-
- text: "De Aangeboden oplossing stelt de medewerker in staat een zaak te registreren."
|
19 |
-
- text: "Het Financieel systeem heeft functionaliteit om een debiteurenadministratie te voeren."
|
20 |
-
- text: "Als gebruiker wil ik dat de oplossing mij naar zaken laat zoeken op basis van zaaknummer, zaaktitel, omschrijving en datum."
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -25,15 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
25 |
|
26 |
# req_mod_ner_modelv2
|
27 |
|
28 |
-
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the
|
29 |
-
This req_mod_ner dataset is private and currently contains 300 examples (240 train, 35 eval and 35 test).
|
30 |
-
|
31 |
It achieves the following results on the evaluation set:
|
32 |
-
- Loss: 0.
|
33 |
-
- Precision: 0.
|
34 |
-
- Recall: 0.
|
35 |
-
- F1: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,50 +42,34 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- num_epochs:
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
67 |
-
| No log | 1.0 |
|
68 |
-
| No log | 2.0 |
|
69 |
-
|
|
70 |
-
|
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.0368 | 17.0 | 2040 | 0.6442 | 0.5583 | 0.5776 | 0.5678 | 0.9169 |
|
84 |
-
| 0.0368 | 18.0 | 2160 | 0.6468 | 0.5317 | 0.5776 | 0.5537 | 0.9136 |
|
85 |
-
| 0.0368 | 19.0 | 2280 | 0.6563 | 0.5403 | 0.5776 | 0.5583 | 0.9153 |
|
86 |
-
| 0.0368 | 20.0 | 2400 | 0.6683 | 0.5323 | 0.5690 | 0.5500 | 0.9104 |
|
87 |
-
| 0.0227 | 21.0 | 2520 | 0.6766 | 0.5074 | 0.5948 | 0.5476 | 0.9096 |
|
88 |
-
| 0.0227 | 22.0 | 2640 | 0.6784 | 0.4965 | 0.6121 | 0.5483 | 0.9072 |
|
89 |
-
| 0.0227 | 23.0 | 2760 | 0.6897 | 0.5583 | 0.5776 | 0.5678 | 0.9144 |
|
90 |
-
| 0.0227 | 24.0 | 2880 | 0.6858 | 0.5182 | 0.6121 | 0.5613 | 0.9112 |
|
91 |
-
| 0.0146 | 25.0 | 3000 | 0.6828 | 0.5224 | 0.6034 | 0.5600 | 0.9128 |
|
92 |
-
| 0.0146 | 26.0 | 3120 | 0.6937 | 0.5528 | 0.5862 | 0.5690 | 0.9169 |
|
93 |
-
| 0.0146 | 27.0 | 3240 | 0.6939 | 0.5397 | 0.5862 | 0.5620 | 0.9144 |
|
94 |
-
| 0.0146 | 28.0 | 3360 | 0.6934 | 0.5476 | 0.5948 | 0.5702 | 0.9169 |
|
95 |
-
| 0.0146 | 29.0 | 3480 | 0.6848 | 0.5147 | 0.6034 | 0.5556 | 0.9120 |
|
96 |
-
| 0.0132 | 30.0 | 3600 | 0.6864 | 0.5231 | 0.5862 | 0.5528 | 0.9112 |
|
97 |
-
| 0.0132 | 31.0 | 3720 | 0.6948 | 0.544 | 0.5862 | 0.5643 | 0.9161 |
|
98 |
-
| 0.0132 | 32.0 | 3840 | 0.6964 | 0.544 | 0.5862 | 0.5643 | 0.9153 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
@@ -103,4 +77,4 @@ The following hyperparameters were used during training:
|
|
103 |
- Transformers 4.24.0
|
104 |
- Pytorch 2.0.0
|
105 |
- Datasets 2.9.0
|
106 |
-
- Tokenizers 0.11.0
|
|
|
10 |
model-index:
|
11 |
- name: req_mod_ner_modelv2
|
12 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
17 |
|
18 |
# req_mod_ner_modelv2
|
19 |
|
20 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the None dataset.
|
|
|
|
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7808
|
23 |
+
- Precision: 0.6389
|
24 |
+
- Recall: 0.5948
|
25 |
+
- F1: 0.6161
|
26 |
+
- Accuracy: 0.9217
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.0001
|
46 |
+
- train_batch_size: 1
|
47 |
+
- eval_batch_size: 1
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 16
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 240 | 0.4479 | 0.4045 | 0.3103 | 0.3512 | 0.8951 |
|
58 |
+
| No log | 2.0 | 480 | 0.4099 | 0.5224 | 0.6034 | 0.5600 | 0.9112 |
|
59 |
+
| 0.4167 | 3.0 | 720 | 0.4394 | 0.5735 | 0.6724 | 0.6190 | 0.9209 |
|
60 |
+
| 0.4167 | 4.0 | 960 | 0.5204 | 0.6195 | 0.6034 | 0.6114 | 0.9177 |
|
61 |
+
| 0.1551 | 5.0 | 1200 | 0.5692 | 0.5556 | 0.7328 | 0.6320 | 0.9136 |
|
62 |
+
| 0.1551 | 6.0 | 1440 | 0.5518 | 0.5414 | 0.6207 | 0.5783 | 0.9144 |
|
63 |
+
| 0.0727 | 7.0 | 1680 | 0.6763 | 0.616 | 0.6638 | 0.6390 | 0.9201 |
|
64 |
+
| 0.0727 | 8.0 | 1920 | 0.7255 | 0.6204 | 0.5776 | 0.5982 | 0.9153 |
|
65 |
+
| 0.0375 | 9.0 | 2160 | 0.7353 | 0.6667 | 0.5862 | 0.6239 | 0.9225 |
|
66 |
+
| 0.0375 | 10.0 | 2400 | 0.7023 | 0.5862 | 0.5862 | 0.5862 | 0.9144 |
|
67 |
+
| 0.0276 | 11.0 | 2640 | 0.7364 | 0.6053 | 0.5948 | 0.6 | 0.9169 |
|
68 |
+
| 0.0276 | 12.0 | 2880 | 0.7443 | 0.6034 | 0.6034 | 0.6034 | 0.9169 |
|
69 |
+
| 0.0183 | 13.0 | 3120 | 0.7658 | 0.6404 | 0.6293 | 0.6348 | 0.9217 |
|
70 |
+
| 0.0183 | 14.0 | 3360 | 0.7693 | 0.6518 | 0.6293 | 0.6404 | 0.9241 |
|
71 |
+
| 0.0118 | 15.0 | 3600 | 0.7794 | 0.6481 | 0.6034 | 0.625 | 0.9225 |
|
72 |
+
| 0.0118 | 16.0 | 3840 | 0.7808 | 0.6389 | 0.5948 | 0.6161 | 0.9217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
### Framework versions
|
|
|
77 |
- Transformers 4.24.0
|
78 |
- Pytorch 2.0.0
|
79 |
- Datasets 2.9.0
|
80 |
+
- Tokenizers 0.11.0
|