Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/deepset/roberta-base-squad2-covid/README.md
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# roberta-base-squad2 for QA on COVID-19
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
**Language model:** deepset/roberta-base-squad2
|
5 |
+
**Language:** English
|
6 |
+
**Downstream-task:** Extractive QA
|
7 |
+
**Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json)
|
8 |
+
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering_crossvalidation.py) in [FARM](https://github.com/deepset-ai/FARM)
|
9 |
+
**Infrastructure**: Tesla v100
|
10 |
+
|
11 |
+
## Hyperparameters
|
12 |
+
```
|
13 |
+
batch_size = 24
|
14 |
+
n_epochs = 3
|
15 |
+
base_LM_model = "deepset/roberta-base-squad2"
|
16 |
+
max_seq_len = 384
|
17 |
+
learning_rate = 3e-5
|
18 |
+
lr_schedule = LinearWarmup
|
19 |
+
warmup_proportion = 0.1
|
20 |
+
doc_stride = 128
|
21 |
+
xval_folds = 5
|
22 |
+
dev_split = 0
|
23 |
+
no_ans_boost = -100
|
24 |
+
```
|
25 |
+
|
26 |
+
## Performance
|
27 |
+
5-fold cross-validation on the data set led to the following results:
|
28 |
+
|
29 |
+
**Single EM-Scores:** [0.222, 0.123, 0.234, 0.159, 0.158]
|
30 |
+
**Single F1-Scores:** [0.476, 0.493, 0.599, 0.461, 0.465]
|
31 |
+
**Single top\_3\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777]
|
32 |
+
**XVAL EM:** 0.17890995260663506
|
33 |
+
**XVAL f1:** 0.49925444207319924
|
34 |
+
**XVAL top\_3\_recall:** 0.8021327014218009
|
35 |
+
|
36 |
+
This model is the model obtained from the **third** fold of the cross-validation.
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
### In Transformers
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
43 |
+
|
44 |
+
|
45 |
+
model_name = "deepset/roberta-base-squad2-covid"
|
46 |
+
|
47 |
+
# a) Get predictions
|
48 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
49 |
+
QA_input = {
|
50 |
+
'question': 'Why is model conversion important?',
|
51 |
+
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
52 |
+
}
|
53 |
+
res = nlp(QA_input)
|
54 |
+
|
55 |
+
# b) Load model & tokenizer
|
56 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
+
```
|
59 |
+
|
60 |
+
### In FARM
|
61 |
+
```python
|
62 |
+
from farm.modeling.adaptive_model import AdaptiveModel
|
63 |
+
from farm.modeling.tokenization import Tokenizer
|
64 |
+
from farm.infer import Inferencer
|
65 |
+
|
66 |
+
model_name = "deepset/roberta-base-squad2-covid"
|
67 |
+
|
68 |
+
# a) Get predictions
|
69 |
+
nlp = Inferencer.load(model_name, task_type="question_answering")
|
70 |
+
QA_input = [{"questions": ["Why is model conversion important?"],
|
71 |
+
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
|
72 |
+
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
|
73 |
+
|
74 |
+
# b) Load model & tokenizer
|
75 |
+
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
76 |
+
tokenizer = Tokenizer.load(model_name)
|
77 |
+
```
|
78 |
+
|
79 |
+
### In haystack
|
80 |
+
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
81 |
+
```python
|
82 |
+
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-covid")
|
83 |
+
# or
|
84 |
+
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2-covid")
|
85 |
+
```
|
86 |
+
|
87 |
+
## Authors
|
88 |
+
Branden Chan: `branden.chan [at] deepset.ai`
|
89 |
+
Timo M枚ller: `timo.moeller [at] deepset.ai`
|
90 |
+
Malte Pietsch: `malte.pietsch [at] deepset.ai`
|
91 |
+
Tanay Soni: `tanay.soni [at] deepset.ai`
|
92 |
+
Bogdan Kosti膰: `bogdan.kostic [at] deepset.ai`
|
93 |
+
|
94 |
+
## About us
|
95 |
+
![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
|
96 |
+
|
97 |
+
We bring NLP to the industry via open source!
|
98 |
+
Our focus: Industry specific language models & large scale QA systems.
|
99 |
+
|
100 |
+
Some of our work:
|
101 |
+
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
102 |
+
- [FARM](https://github.com/deepset-ai/FARM)
|
103 |
+
- [Haystack](https://github.com/deepset-ai/haystack/)
|
104 |
+
|
105 |
+
Get in touch:
|
106 |
+
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|