Last commit not found
import os | |
import shutil | |
from argparse import ArgumentParser | |
from glob import glob | |
from tqdm import tqdm, trange | |
import torch | |
from safetensors.torch import safe_open, save_file | |
mapping = { | |
"embed_tokens": ("embed", 0), | |
"input_layernorm": ("attn_norm", None), | |
"post_attention_layernorm": ("ffn_norm", None), | |
"q_proj": ("wq", 0), | |
"q_a_proj": ("wq_a", None), | |
"q_a_layernorm": ("q_norm", None), | |
"q_b_proj": ("wq_b", 0), | |
"kv_a_proj_with_mqa": ("wkv_a", None), | |
"kv_a_layernorm": ("kv_norm", None), | |
"kv_b_proj": ("wkv_b", 0), | |
"o_proj": ("wo", 1), | |
"gate": ("gate", None), | |
"gate_proj": ("w1", 0), | |
"down_proj": ("w2", 1), | |
"up_proj": ("w3", 0), | |
"norm": ("norm", None), | |
"lm_head": ("head", 0), | |
"scale": ("scale", None), | |
} | |
def main(hf_ckpt_path, save_path, n_experts, mp): | |
torch.set_num_threads(8) | |
n_local_experts = n_experts // mp | |
state_dicts = [{} for _ in range(mp)] | |
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))): | |
with safe_open(file_path, framework="pt", device="cpu") as f: | |
for name in f.keys(): | |
if "model.layers.61" in name: | |
continue | |
param: torch.Tensor = f.get_tensor(name) | |
if name.startswith("model."): | |
name = name[len("model."):] | |
name = name.replace("self_attn", "attn") | |
name = name.replace("mlp", "ffn") | |
name = name.replace("weight_scale_inv", "scale") | |
name = name.replace("e_score_correction_bias", "bias") | |
key = name.split(".")[-2] | |
assert key in mapping | |
new_key, dim = mapping[key] | |
name = name.replace(key, new_key) | |
for i in range(mp): | |
new_param = param | |
if "experts" in name and "shared_experts" not in name: | |
idx = int(name.split(".")[-3]) | |
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts: | |
continue | |
elif dim is not None: | |
assert param.size(dim) % mp == 0 | |
shard_size = param.size(dim) // mp | |
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous() | |
state_dicts[i][name] = new_param | |
os.makedirs(save_path, exist_ok=True) | |
for i in trange(mp): | |
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors")) | |
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")): | |
new_file_path = os.path.join(save_path, os.path.basename(file_path)) | |
shutil.copyfile(file_path, new_file_path) | |
if __name__ == "__main__": | |
parser = ArgumentParser() | |
parser.add_argument("--hf-ckpt-path", type=str, required=True) | |
parser.add_argument("--save-path", type=str, required=True) | |
parser.add_argument("--n-experts", type=int, required=True) | |
parser.add_argument("--model-parallel", type=int, default=1) | |
args = parser.parse_args() | |
assert args.n_experts % args.model_parallel == 0 | |
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel) | |