from prompt_injection.mutators.base import PromptMutator from transformers import MarianMTModel, MarianTokenizer class RoundTripPromptMutator(PromptMutator): def __init__(self,model_name_translate='Helsinki-NLP/opus-mt-en-zh',model_name_inv_translate='Helsinki-NLP/opus-mt-zh-en',label=None): self.model_name_translate=model_name_translate self.model_name_inv_translate=model_name_inv_translate # Load the pre-trained model and tokenizer self.model_translate = MarianMTModel.from_pretrained(model_name_translate) self.tokenizer_translate = MarianTokenizer.from_pretrained(model_name_translate) # Load the pre-trained model and tokenizer self.model_inv_translate = MarianMTModel.from_pretrained(model_name_inv_translate) self.tokenizer_inv_translate = MarianTokenizer.from_pretrained(model_name_inv_translate) if label is None: self.label= f'RoundTripPromptMutator-{self.model_name_translate}--{self.model_name_translate}' else: self.label= f'RoundTripPromptMutator-{label}' def to_lang(self,text): inputs = self.tokenizer_translate.encode(text, return_tensors='pt', padding=True, truncation=True) translated_tokens = self.model_translate.generate(inputs, max_length=40, num_beams=4, early_stopping=True) translated_text = self.tokenizer_translate.decode(translated_tokens[0], skip_special_tokens=True) return translated_text def from_lang(self,text): inputs = self.tokenizer_inv_translate.encode(text, return_tensors='pt', padding=True, truncation=True) translated_tokens = self.model_inv_translate.generate(inputs, max_length=40, num_beams=4, early_stopping=True) translated_text = self.tokenizer_inv_translate.decode(translated_tokens[0], skip_special_tokens=True) return translated_text def mutate(self,sample:str)->str: return self.from_lang(self.to_lang(sample)) def get_name(self): return self.label