from prompt_injection.evaluators.base import PromptEvaluator from sentence_transformers import SentenceTransformer import numpy as np class MiniLMEmbeddingPromptEvaluator(PromptEvaluator): def __init__(self) -> None: super().__init__() self.model=SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2') def eval_sample(self,sample): try: return self.model.encode([sample]) except Exception as err: return np.nan def get_name(self): return 'Embedding'