Create gpt2_perplexity.py
Browse files
prompt_injection/evaluators/gpt2_perplexity.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from prompt_injection.evaluators.base import PromptEvaluator
|
2 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel,GPT2Model
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class GPT2PerplexityEvaluator(PromptEvaluator):
|
7 |
+
def __init__(self,model_name='gpt2') -> None:
|
8 |
+
super().__init__()
|
9 |
+
self.model_name=model_name
|
10 |
+
self.tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
|
11 |
+
self.model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
12 |
+
|
13 |
+
def calculate_perplexity(self,sentence):
|
14 |
+
inputs = self.tokenizer_gpt2(sentence, return_tensors='pt')
|
15 |
+
input_ids = inputs['input_ids']
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = self.model_gpt2(input_ids, labels=input_ids)
|
18 |
+
# Calculate the loss
|
19 |
+
loss = outputs.loss
|
20 |
+
perplexity = torch.exp(loss)
|
21 |
+
return perplexity
|
22 |
+
|
23 |
+
|
24 |
+
def eval_sample(self,sample):
|
25 |
+
try:
|
26 |
+
return self.calculate_perplexity(sample)
|
27 |
+
except Exception as err:
|
28 |
+
print(err)
|
29 |
+
return np.nan
|
30 |
+
|
31 |
+
def get_name(self):
|
32 |
+
return 'Perplexity'
|