Adapters
khulnasoft's picture
Create mini_llm_perplexity.py
ed66ac7 verified
raw
history blame contribute delete
530 Bytes
from prompt_injection.evaluators.base import PromptEvaluator
from sentence_transformers import SentenceTransformer
import numpy as np
class MiniLMEmbeddingPromptEvaluator(PromptEvaluator):
def __init__(self) -> None:
super().__init__()
self.model=SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2')
def eval_sample(self,sample):
try:
return self.model.encode([sample])
except Exception as err:
return np.nan
def get_name(self):
return 'Embedding'