|
|
|
|
|
from prompt_injection.mutators.base import PromptMutator |
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
|
|
class RoundTripPromptMutator(PromptMutator): |
|
def __init__(self,model_name_translate='Helsinki-NLP/opus-mt-en-zh',model_name_inv_translate='Helsinki-NLP/opus-mt-zh-en',label=None): |
|
self.model_name_translate=model_name_translate |
|
self.model_name_inv_translate=model_name_inv_translate |
|
|
|
|
|
self.model_translate = MarianMTModel.from_pretrained(model_name_translate) |
|
self.tokenizer_translate = MarianTokenizer.from_pretrained(model_name_translate) |
|
|
|
|
|
self.model_inv_translate = MarianMTModel.from_pretrained(model_name_inv_translate) |
|
self.tokenizer_inv_translate = MarianTokenizer.from_pretrained(model_name_inv_translate) |
|
if label is None: |
|
self.label= f'RoundTripPromptMutator-{self.model_name_translate}--{self.model_name_translate}' |
|
else: |
|
self.label= f'RoundTripPromptMutator-{label}' |
|
|
|
|
|
def to_lang(self,text): |
|
inputs = self.tokenizer_translate.encode(text, return_tensors='pt', padding=True, truncation=True) |
|
translated_tokens = self.model_translate.generate(inputs, max_length=40, num_beams=4, early_stopping=True) |
|
translated_text = self.tokenizer_translate.decode(translated_tokens[0], skip_special_tokens=True) |
|
return translated_text |
|
|
|
def from_lang(self,text): |
|
inputs = self.tokenizer_inv_translate.encode(text, return_tensors='pt', padding=True, truncation=True) |
|
translated_tokens = self.model_inv_translate.generate(inputs, max_length=40, num_beams=4, early_stopping=True) |
|
translated_text = self.tokenizer_inv_translate.decode(translated_tokens[0], skip_special_tokens=True) |
|
return translated_text |
|
def mutate(self,sample:str)->str: |
|
return self.from_lang(self.to_lang(sample)) |
|
|
|
def get_name(self): |
|
return self.label |