Update gripper_position.py
Browse files- gripper_position.py +117 -0
gripper_position.py
CHANGED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import SamModel, SamProcessor, pipeline
|
5 |
+
|
6 |
+
|
7 |
+
checkpoint = "google/owlvit-base-patch16"
|
8 |
+
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device="cuda")
|
9 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").cuda()
|
10 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
11 |
+
|
12 |
+
# image_dims = (256, 256)
|
13 |
+
image_dims = (224, 224)
|
14 |
+
|
15 |
+
|
16 |
+
def get_bounding_boxes(img, prompt="the black robotic gripper"):
|
17 |
+
predictions = detector(img, candidate_labels=[prompt], threshold=0.01)
|
18 |
+
|
19 |
+
return predictions
|
20 |
+
|
21 |
+
|
22 |
+
def show_box(box, ax, meta, color):
|
23 |
+
x0, y0 = box["xmin"], box["ymin"]
|
24 |
+
w, h = box["xmax"] - box["xmin"], box["ymax"] - box["ymin"]
|
25 |
+
ax.add_patch(
|
26 |
+
matplotlib.patches.FancyBboxPatch((x0, y0), w, h, edgecolor=color, facecolor=(0, 0, 0, 0), lw=2, label="hehe")
|
27 |
+
)
|
28 |
+
ax.text(x0, y0 + 10, "{:.3f}".format(meta["score"]), color="white")
|
29 |
+
|
30 |
+
|
31 |
+
def get_median(mask, p):
|
32 |
+
row_sum = np.sum(mask, axis=1)
|
33 |
+
cumulative_sum = np.cumsum(row_sum)
|
34 |
+
|
35 |
+
if p >= 1.0:
|
36 |
+
p = 1
|
37 |
+
|
38 |
+
total_sum = np.sum(row_sum)
|
39 |
+
threshold = p * total_sum
|
40 |
+
|
41 |
+
return np.argmax(cumulative_sum >= threshold)
|
42 |
+
|
43 |
+
|
44 |
+
def get_gripper_mask(img, pred):
|
45 |
+
box = [
|
46 |
+
round(pred["box"]["xmin"], 2),
|
47 |
+
round(pred["box"]["ymin"], 2),
|
48 |
+
round(pred["box"]["xmax"], 2),
|
49 |
+
round(pred["box"]["ymax"], 2),
|
50 |
+
]
|
51 |
+
|
52 |
+
inputs = sam_processor(img, input_boxes=[[[box]]], return_tensors="pt")
|
53 |
+
|
54 |
+
for k in inputs.keys():
|
55 |
+
inputs[k] = inputs[k].cuda()
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = sam_model(**inputs)
|
58 |
+
|
59 |
+
mask = (
|
60 |
+
sam_processor.image_processor.post_process_masks(
|
61 |
+
outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
62 |
+
)[0][0][0]
|
63 |
+
.cpu()
|
64 |
+
.numpy()
|
65 |
+
)
|
66 |
+
|
67 |
+
return mask
|
68 |
+
|
69 |
+
|
70 |
+
def sq(w, h):
|
71 |
+
return np.concatenate(
|
72 |
+
[
|
73 |
+
(np.arange(w * h).reshape(h, w) % w)[:, :, None],
|
74 |
+
(np.arange(w * h).reshape(h, w) // w)[:, :, None],
|
75 |
+
],
|
76 |
+
axis=-1,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def mask_to_pos_weighted(mask):
|
81 |
+
pos = sq(*image_dims)
|
82 |
+
|
83 |
+
weight = pos[:, :, 0] + pos[:, :, 1]
|
84 |
+
weight = weight * weight
|
85 |
+
|
86 |
+
x = np.sum(mask * pos[:, :, 0] * weight) / np.sum(mask * weight)
|
87 |
+
y = get_median(mask * weight, 0.95)
|
88 |
+
|
89 |
+
return x, y
|
90 |
+
|
91 |
+
|
92 |
+
def mask_to_pos_naive(mask):
|
93 |
+
pos = sq(*image_dims)
|
94 |
+
weight = pos[:, :, 0] + pos[:, :, 1]
|
95 |
+
min_pos = np.argmax((weight * mask).flatten())
|
96 |
+
|
97 |
+
return min_pos % image_dims[0] - (image_dims[0] / 16), min_pos // image_dims[0] - (image_dims[0] / 24)
|
98 |
+
|
99 |
+
|
100 |
+
def get_gripper_pos_raw(img):
|
101 |
+
# img = Image.fromarray(img.numpy())
|
102 |
+
predictions = get_bounding_boxes(img)
|
103 |
+
|
104 |
+
if len(predictions) > 0:
|
105 |
+
mask = get_gripper_mask(img, predictions[0])
|
106 |
+
pos = mask_to_pos_naive(mask)
|
107 |
+
else:
|
108 |
+
mask = np.zeros(image_dims)
|
109 |
+
pos = (-1, -1)
|
110 |
+
predictions = [None]
|
111 |
+
|
112 |
+
# return (int(pos[0]), int(pos[1])), mask, predictions[0]
|
113 |
+
return (int(pos[0]*224/image_dims[0]), int(pos[1]*224/image_dims[1])), mask, predictions[0]
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
pass
|