debjit20504 commited on
Commit
8b4fef4
Β·
verified Β·
1 Parent(s): 575f9d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -88
README.md CHANGED
@@ -1,89 +1,89 @@
1
- ---
2
- tags:
3
- - text-classification
4
- - transformers
5
- - biobert
6
- - miRNA
7
- - biomedical
8
- - LoRA
9
- - fine-tuning
10
- library_name: transformers
11
- datasets:
12
- - custom-biomedical-dataset
13
- license: apache-2.0
14
- ---
15
-
16
- # 🧬 miRNA-BioBERT: Fine-Tuned BioBERT for miRNA Sentence Classification
17
- **Fine-tuned BioBERT model for classifying miRNA-related sentences in biomedical research papers.**
18
-
19
- <!-- πŸ”— **Hugging Face Model Link**: [debjit20504/miRNA-biobert](https://huggingface.co/debjit20504/miRNA-biobert) -->
20
-
21
- ---
22
-
23
- ## πŸ“Œ Overview
24
- **miRNA-BioBERT** is a fine-tuned version of [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1), trained specifically for **classifying sentences** as **miRNA-related (relevant) or not (irrelevant)**. The model is useful for **automating literature reviews**, **extracting relevant sentences**, and **identifying key insights** in genomic research.
25
-
26
- βœ” **Base Model**: `dmis-lab/biobert-base-cased-v1.1`
27
- βœ” **Fine-tuning Method**: **LoRA (Low-Rank Adaptation)**
28
- βœ” **Dataset**: **Curated biomedical text corpus containing labeled miRNA-relevant and non-relevant sentences**
29
- βœ” **Task**: **Binary classification (1 = relevant, 0 = not relevant)**
30
- βœ” **Trained on**: **RTX A6000 GPU (5 epochs, batch size 32, learning rate 2e-5)**
31
-
32
- ## πŸš€ How to Use the Model
33
- ### 1️⃣ Install Dependencies
34
- ```bash
35
- pip install transformers torch
36
- ```
37
- ```python
38
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
39
- import torch
40
-
41
- # Load the model and tokenizer
42
- model_name = "debjit20504/miRNA-biobert"
43
- tokenizer = AutoTokenizer.from_pretrained(model_name)
44
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
45
-
46
- # Move model to GPU or MPS (for Mac)
47
- device = torch.device("mps") if torch.backends.mps.is_available() else torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
- model.to(device)
49
- model.eval()
50
-
51
- def classify_text(text):
52
- inputs = tokenizer(text, return_tensors="pt").to(device)
53
- with torch.no_grad():
54
- output = model(**inputs)
55
- label = torch.argmax(output.logits, dim=1).item()
56
- return "Relevant (miRNA-related)" if label == 1 else "Not Relevant"
57
-
58
- # Example Test
59
- sample_text = "miRNA translation is regulated by miRNAs."
60
- print(f"Classification: {classify_text(sample_text)}")
61
- ```
62
-
63
- ## πŸ“Š Training Details
64
- - Dataset: Biomedical text dataset with 429,785 relevant sentences and 87,966 irrelevant sentences.
65
- - Fine-Tuning Method: LoRA (Low-Rank Adaptation) for efficient training.
66
- - Training Hardware: NVIDIA RTX A6000 GPU.
67
- - Training Settings:
68
- - Batch size: 32
69
- - Learning rate: 2e-5
70
- - Optimizer: AdamW
71
- - Warmup steps: 1000
72
- - Epochs: 5
73
- - Mixed precision (fp16): βœ… Enabled for efficiency.
74
-
75
- ---
76
-
77
- ## πŸ“– Model Applications
78
- βœ… **Biomedical NLP** – Extracting meaningful information from biomedical literature.
79
- βœ… **miRNA Research** – Identifying sentences discussing miRNA mechanisms.
80
- βœ… **Automated Literature Review** – Filtering relevant studies efficiently.
81
- βœ… **Genomics & Bioinformatics** – Enhancing data retrieval from scientific texts.
82
-
83
- ---
84
-
85
- ## πŸ“¬ Contact
86
- For any questions or collaborations, reach out via:
87
-
88
- **πŸ“§ Email**: [email protected]
89
  **πŸ”— LinkedIn**: https://www.linkedin.com/in/debjit-pramanik-88a837171/
 
1
+ ---
2
+ tags:
3
+ - text-classification
4
+ - transformers
5
+ - biobert
6
+ - miRNA
7
+ - biomedical
8
+ - LoRA
9
+ - fine-tuning
10
+ library_name: transformers
11
+ datasets:
12
+ - custom-biomedical-dataset
13
+ license: apache-2.0
14
+ ---
15
+
16
+ # 🧬 miRNA-BioBERT: Fine-Tuned BioBERT for miRNA Sentence Classification
17
+ **Fine-tuned BioBERT model for classifying miRNA-related sentences in biomedical research papers.**
18
+
19
+ <!-- πŸ”— **Hugging Face Model Link**: [debjit20504/miRNA-biobert](https://huggingface.co/debjit20504/miRNA-biobert) -->
20
+
21
+ ---
22
+
23
+ ## πŸ“Œ Overview
24
+ **miRNA-BioBERT** is a fine-tuned version of [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1), trained specifically for **classifying sentences** as **miRNA-related (relevant) or not (irrelevant)**. The model is useful for **automating literature reviews**, **extracting relevant sentences**, and **identifying key insights** in genomic research.
25
+
26
+ βœ” **Base Model**: `dmis-lab/biobert-base-cased-v1.1`
27
+ βœ” **Fine-tuning Method**: **LoRA (Low-Rank Adaptation)**
28
+ βœ” **Dataset**: **Curated biomedical text corpus containing labeled miRNA-relevant and non-relevant sentences**
29
+ βœ” **Task**: **Binary classification (1 = functional, 0 = non-functional)**
30
+ βœ” **Trained on**: **RTX A6000 GPU (5 epochs, batch size 32, learning rate 2e-5)**
31
+
32
+ ## πŸš€ How to Use the Model
33
+ ### 1️⃣ Install Dependencies
34
+ ```bash
35
+ pip install transformers torch
36
+ ```
37
+ ```python
38
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
39
+ import torch
40
+
41
+ # Load the model and tokenizer
42
+ model_name = "debjit20504/miRNA-biobert"
43
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
44
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
45
+
46
+ # Move model to GPU or MPS (for Mac)
47
+ device = torch.device("mps") if torch.backends.mps.is_available() else torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
+ model.to(device)
49
+ model.eval()
50
+
51
+ def classify_text(text):
52
+ inputs = tokenizer(text, return_tensors="pt").to(device)
53
+ with torch.no_grad():
54
+ output = model(**inputs)
55
+ label = torch.argmax(output.logits, dim=1).item()
56
+ return "functional" if label == 1 else "Non-functional"
57
+
58
+ # Example Test
59
+ sample_text = "miRNA translation is regulated by miRNAs."
60
+ print(f"Classification: {classify_text(sample_text)}")
61
+ ```
62
+
63
+ ## πŸ“Š Training Details
64
+ - Dataset: Biomedical text dataset with 429,785 relevant sentences and 87,966 irrelevant sentences.
65
+ - Fine-Tuning Method: LoRA (Low-Rank Adaptation) for efficient training.
66
+ - Training Hardware: NVIDIA RTX A6000 GPU.
67
+ - Training Settings:
68
+ - Batch size: 32
69
+ - Learning rate: 2e-5
70
+ - Optimizer: AdamW
71
+ - Warmup steps: 1000
72
+ - Epochs: 5
73
+ - Mixed precision (fp16): βœ… Enabled for efficiency.
74
+
75
+ ---
76
+
77
+ ## πŸ“– Model Applications
78
+ βœ… **Biomedical NLP** – Extracting meaningful information from biomedical literature.
79
+ βœ… **miRNA Research** – Identifying sentences discussing miRNA mechanisms.
80
+ βœ… **Automated Literature Review** – Filtering relevant studies efficiently.
81
+ βœ… **Genomics & Bioinformatics** – Enhancing data retrieval from scientific texts.
82
+
83
+ ---
84
+
85
+ ## πŸ“¬ Contact
86
+ For any questions or collaborations, reach out via:
87
+
88
+ **πŸ“§ Email**: [email protected]
89
  **πŸ”— LinkedIn**: https://www.linkedin.com/in/debjit-pramanik-88a837171/