Commit
Β·
57ac719
1
Parent(s):
41ca74b
updated readme file
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ tags:
|
|
3 |
- text-classification
|
4 |
- transformers
|
5 |
- biobert
|
6 |
-
-
|
7 |
- biomedical
|
8 |
- LoRA
|
9 |
- fine-tuning
|
@@ -13,19 +13,19 @@ datasets:
|
|
13 |
license: apache-2.0
|
14 |
---
|
15 |
|
16 |
-
# π§¬
|
17 |
-
**Fine-tuned BioBERT model for classifying
|
18 |
|
19 |
-
<!-- π **Hugging Face Model Link**: [debjit20504/
|
20 |
|
21 |
---
|
22 |
|
23 |
## π Overview
|
24 |
-
**
|
25 |
|
26 |
β **Base Model**: `dmis-lab/biobert-base-cased-v1.1`
|
27 |
β **Fine-tuning Method**: **LoRA (Low-Rank Adaptation)**
|
28 |
-
β **Dataset**: **Curated biomedical text corpus containing labeled
|
29 |
β **Task**: **Binary classification (1 = relevant, 0 = not relevant)**
|
30 |
β **Trained on**: **RTX A6000 GPU (5 epochs, batch size 32, learning rate 2e-5)**
|
31 |
|
@@ -33,7 +33,7 @@ license: apache-2.0
|
|
33 |
|
34 |
## π Model Applications
|
35 |
β
**Biomedical NLP** β Extracting meaningful information from biomedical literature.
|
36 |
-
β
**
|
37 |
β
**Automated Literature Review** β Filtering relevant studies efficiently.
|
38 |
β
**Genomics & Bioinformatics** β Enhancing data retrieval from scientific texts.
|
39 |
|
@@ -49,7 +49,7 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
49 |
import torch
|
50 |
|
51 |
# Load the model and tokenizer
|
52 |
-
model_name = "debjit20504/
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
55 |
|
@@ -63,10 +63,10 @@ def classify_text(text):
|
|
63 |
with torch.no_grad():
|
64 |
output = model(**inputs)
|
65 |
label = torch.argmax(output.logits, dim=1).item()
|
66 |
-
return "Relevant (
|
67 |
|
68 |
# Example Test
|
69 |
-
sample_text = "
|
70 |
print(f"Classification: {classify_text(sample_text)}")
|
71 |
```
|
72 |
|
|
|
3 |
- text-classification
|
4 |
- transformers
|
5 |
- biobert
|
6 |
+
- miRNA
|
7 |
- biomedical
|
8 |
- LoRA
|
9 |
- fine-tuning
|
|
|
13 |
license: apache-2.0
|
14 |
---
|
15 |
|
16 |
+
# 𧬠miRNA-BioBERT: Fine-Tuned BioBERT for miRNA Sentence Classification
|
17 |
+
**Fine-tuned BioBERT model for classifying miRNA-related sentences in biomedical research papers.**
|
18 |
|
19 |
+
<!-- π **Hugging Face Model Link**: [debjit20504/miRNA-biobert](https://huggingface.co/debjit20504/miRNA-biobert) -->
|
20 |
|
21 |
---
|
22 |
|
23 |
## π Overview
|
24 |
+
**miRNA-BioBERT** is a fine-tuned version of [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1), trained specifically for **classifying sentences** as **miRNA-related (relevant) or not (irrelevant)**. The model is useful for **automating literature reviews**, **extracting relevant sentences**, and **identifying key insights** in genomic research.
|
25 |
|
26 |
β **Base Model**: `dmis-lab/biobert-base-cased-v1.1`
|
27 |
β **Fine-tuning Method**: **LoRA (Low-Rank Adaptation)**
|
28 |
+
β **Dataset**: **Curated biomedical text corpus containing labeled miRNA-relevant and non-relevant sentences**
|
29 |
β **Task**: **Binary classification (1 = relevant, 0 = not relevant)**
|
30 |
β **Trained on**: **RTX A6000 GPU (5 epochs, batch size 32, learning rate 2e-5)**
|
31 |
|
|
|
33 |
|
34 |
## π Model Applications
|
35 |
β
**Biomedical NLP** β Extracting meaningful information from biomedical literature.
|
36 |
+
β
**miRNA Research** β Identifying sentences discussing miRNA mechanisms.
|
37 |
β
**Automated Literature Review** β Filtering relevant studies efficiently.
|
38 |
β
**Genomics & Bioinformatics** β Enhancing data retrieval from scientific texts.
|
39 |
|
|
|
49 |
import torch
|
50 |
|
51 |
# Load the model and tokenizer
|
52 |
+
model_name = "debjit20504/miRNA-biobert"
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
55 |
|
|
|
63 |
with torch.no_grad():
|
64 |
output = model(**inputs)
|
65 |
label = torch.argmax(output.logits, dim=1).item()
|
66 |
+
return "Relevant (miRNA-related)" if label == 1 else "Not Relevant"
|
67 |
|
68 |
# Example Test
|
69 |
+
sample_text = "miRNA translation is regulated by miRNAs."
|
70 |
print(f"Classification: {classify_text(sample_text)}")
|
71 |
```
|
72 |
|