debjit20504 commited on
Commit
57ac719
Β·
1 Parent(s): 41ca74b

updated readme file

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -3,7 +3,7 @@ tags:
3
  - text-classification
4
  - transformers
5
  - biobert
6
- - mRNA
7
  - biomedical
8
  - LoRA
9
  - fine-tuning
@@ -13,19 +13,19 @@ datasets:
13
  license: apache-2.0
14
  ---
15
 
16
- # 🧬 mRNA-BioBERT: Fine-Tuned BioBERT for mRNA Sentence Classification
17
- **Fine-tuned BioBERT model for classifying mRNA-related sentences in biomedical research papers.**
18
 
19
- <!-- πŸ”— **Hugging Face Model Link**: [debjit20504/mRNA-biobert](https://huggingface.co/debjit20504/mRNA-biobert) -->
20
 
21
  ---
22
 
23
  ## πŸ“Œ Overview
24
- **mRNA-BioBERT** is a fine-tuned version of [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1), trained specifically for **classifying sentences** as **mRNA-related (relevant) or not (irrelevant)**. The model is useful for **automating literature reviews**, **extracting relevant sentences**, and **identifying key insights** in genomic research.
25
 
26
  βœ” **Base Model**: `dmis-lab/biobert-base-cased-v1.1`
27
  βœ” **Fine-tuning Method**: **LoRA (Low-Rank Adaptation)**
28
- βœ” **Dataset**: **Curated biomedical text corpus containing labeled mRNA-relevant and non-relevant sentences**
29
  βœ” **Task**: **Binary classification (1 = relevant, 0 = not relevant)**
30
  βœ” **Trained on**: **RTX A6000 GPU (5 epochs, batch size 32, learning rate 2e-5)**
31
 
@@ -33,7 +33,7 @@ license: apache-2.0
33
 
34
  ## πŸ“– Model Applications
35
  βœ… **Biomedical NLP** – Extracting meaningful information from biomedical literature.
36
- βœ… **mRNA Research** – Identifying sentences discussing mRNA mechanisms.
37
  βœ… **Automated Literature Review** – Filtering relevant studies efficiently.
38
  βœ… **Genomics & Bioinformatics** – Enhancing data retrieval from scientific texts.
39
 
@@ -49,7 +49,7 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
49
  import torch
50
 
51
  # Load the model and tokenizer
52
- model_name = "debjit20504/mRNA-biobert"
53
  tokenizer = AutoTokenizer.from_pretrained(model_name)
54
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
55
 
@@ -63,10 +63,10 @@ def classify_text(text):
63
  with torch.no_grad():
64
  output = model(**inputs)
65
  label = torch.argmax(output.logits, dim=1).item()
66
- return "Relevant (mRNA-related)" if label == 1 else "Not Relevant"
67
 
68
  # Example Test
69
- sample_text = "mRNA translation is regulated by miRNAs."
70
  print(f"Classification: {classify_text(sample_text)}")
71
  ```
72
 
 
3
  - text-classification
4
  - transformers
5
  - biobert
6
+ - miRNA
7
  - biomedical
8
  - LoRA
9
  - fine-tuning
 
13
  license: apache-2.0
14
  ---
15
 
16
+ # 🧬 miRNA-BioBERT: Fine-Tuned BioBERT for miRNA Sentence Classification
17
+ **Fine-tuned BioBERT model for classifying miRNA-related sentences in biomedical research papers.**
18
 
19
+ <!-- πŸ”— **Hugging Face Model Link**: [debjit20504/miRNA-biobert](https://huggingface.co/debjit20504/miRNA-biobert) -->
20
 
21
  ---
22
 
23
  ## πŸ“Œ Overview
24
+ **miRNA-BioBERT** is a fine-tuned version of [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1), trained specifically for **classifying sentences** as **miRNA-related (relevant) or not (irrelevant)**. The model is useful for **automating literature reviews**, **extracting relevant sentences**, and **identifying key insights** in genomic research.
25
 
26
  βœ” **Base Model**: `dmis-lab/biobert-base-cased-v1.1`
27
  βœ” **Fine-tuning Method**: **LoRA (Low-Rank Adaptation)**
28
+ βœ” **Dataset**: **Curated biomedical text corpus containing labeled miRNA-relevant and non-relevant sentences**
29
  βœ” **Task**: **Binary classification (1 = relevant, 0 = not relevant)**
30
  βœ” **Trained on**: **RTX A6000 GPU (5 epochs, batch size 32, learning rate 2e-5)**
31
 
 
33
 
34
  ## πŸ“– Model Applications
35
  βœ… **Biomedical NLP** – Extracting meaningful information from biomedical literature.
36
+ βœ… **miRNA Research** – Identifying sentences discussing miRNA mechanisms.
37
  βœ… **Automated Literature Review** – Filtering relevant studies efficiently.
38
  βœ… **Genomics & Bioinformatics** – Enhancing data retrieval from scientific texts.
39
 
 
49
  import torch
50
 
51
  # Load the model and tokenizer
52
+ model_name = "debjit20504/miRNA-biobert"
53
  tokenizer = AutoTokenizer.from_pretrained(model_name)
54
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
55
 
 
63
  with torch.no_grad():
64
  output = model(**inputs)
65
  label = torch.argmax(output.logits, dim=1).item()
66
+ return "Relevant (miRNA-related)" if label == 1 else "Not Relevant"
67
 
68
  # Example Test
69
+ sample_text = "miRNA translation is regulated by miRNAs."
70
  print(f"Classification: {classify_text(sample_text)}")
71
  ```
72