deadf00d commited on
Commit
18b000b
·
verified ·
1 Parent(s): aa233bb

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:3385
11
+ - loss:ContrastiveLoss
12
+ base_model: sentence-transformers/all-MiniLM-L6-v2
13
+ widget:
14
+ - source_sentence: The American Express, |The American Express 2025 Boost - Max $100
15
+ Bet|
16
+ sentences:
17
+ - Hero Dubai Desert Classic, |Hero Dubai Desert Classic 2025| - |Round 1 Group Markets|
18
+ - |Tom Mckibbin|/|Johannes Veerman|/|Elvis Smylie|
19
+ - Mitsubishi Electric Championship at Hualalai
20
+ - The American Express, |The American Express 2025| - |Round 3 Group Markets| -
21
+ |Nate Lashley| vs. |David Skinns|
22
+ - source_sentence: The American Express, |The American Express 2025 Boost - Max $100
23
+ Bet|
24
+ sentences:
25
+ - The American Express, Christiaan Bezuidenhout vs Harris English
26
+ - H. Li/D. Bradbury/D. Frittelli
27
+ - Hero Dubai Desert Classic, Coussaud v Fitzpatrick v Reed - R1
28
+ - source_sentence: Hero Dubai Desert Classic, |Hero Dubai Desert Classic 2025| - |Round
29
+ 2 Group Markets| - |Pablo Larrazabal|/|Adrian Meronk|/|Alexander Bjork|
30
+ sentences:
31
+ - Hero Dubai Desert Classic, Van Driel v Migliozzi v Canter - R1
32
+ - Hero Dubai Desert Classic, Johannes Veerman
33
+ - Hero Dubai Desert Classic, Langasque v Jordan v Bradbury - R1
34
+ - source_sentence: P. Summerhays/M. Lorenzo-Vera/K. Aphibarnrat
35
+ sentences:
36
+ - The American Express, |The American Express 2025| - |Round 3 Group Markets| -
37
+ |Beau Hossler| vs. |Will Gordon|
38
+ - The American Express 2025 - La Quinta Country Club
39
+ - The American Express, Kristoffer Ventura vs Jesper Svensson
40
+ - source_sentence: The American Express, |The American Express 2025 Boost - Max $100
41
+ Bet|
42
+ sentences:
43
+ - The American Express, Luke List vs Kevin Yu
44
+ - The American Express, Keith Mitchell vs Brandt Snedeker
45
+ - Hidalgo, Angel - Björk, Alexander
46
+ pipeline_tag: sentence-similarity
47
+ library_name: sentence-transformers
48
+ metrics:
49
+ - pearson_cosine
50
+ - spearman_cosine
51
+ model-index:
52
+ - name: MPNet base trained on AllNLI triplets
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.9253637137988899
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.7134472119035538
66
+ name: Spearman Cosine
67
+ - type: pearson_cosine
68
+ value: 0.9424301338012122
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: 0.7842157609143191
72
+ name: Spearman Cosine
73
+ ---
74
+
75
+ # MPNet base trained on AllNLI triplets
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
84
+ - **Maximum Sequence Length:** 256 tokens
85
+ - **Output Dimensionality:** 384 dimensions
86
+ - **Similarity Function:** Cosine Similarity
87
+ - **Training Dataset:**
88
+ - json
89
+ - **Language:** en
90
+ - **License:** apache-2.0
91
+
92
+ ### Model Sources
93
+
94
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
95
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
96
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
97
+
98
+ ### Full Model Architecture
99
+
100
+ ```
101
+ SentenceTransformer(
102
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
103
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
104
+ (2): Normalize()
105
+ )
106
+ ```
107
+
108
+ ## Usage
109
+
110
+ ### Direct Usage (Sentence Transformers)
111
+
112
+ First install the Sentence Transformers library:
113
+
114
+ ```bash
115
+ pip install -U sentence-transformers
116
+ ```
117
+
118
+ Then you can load this model and run inference.
119
+ ```python
120
+ from sentence_transformers import SentenceTransformer
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SentenceTransformer("deadf00d/minilm-odds-events-weval-float-1epoch")
124
+ # Run inference
125
+ sentences = [
126
+ 'The American Express, |The American Express 2025 Boost - Max $100 Bet|',
127
+ 'The American Express, Luke List vs Kevin Yu',
128
+ 'Hidalgo, Angel - Björk, Alexander',
129
+ ]
130
+ embeddings = model.encode(sentences)
131
+ print(embeddings.shape)
132
+ # [3, 384]
133
+
134
+ # Get the similarity scores for the embeddings
135
+ similarities = model.similarity(embeddings, embeddings)
136
+ print(similarities.shape)
137
+ # [3, 3]
138
+ ```
139
+
140
+ <!--
141
+ ### Direct Usage (Transformers)
142
+
143
+ <details><summary>Click to see the direct usage in Transformers</summary>
144
+
145
+ </details>
146
+ -->
147
+
148
+ <!--
149
+ ### Downstream Usage (Sentence Transformers)
150
+
151
+ You can finetune this model on your own dataset.
152
+
153
+ <details><summary>Click to expand</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Out-of-Scope Use
160
+
161
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
162
+ -->
163
+
164
+ ## Evaluation
165
+
166
+ ### Metrics
167
+
168
+ #### Semantic Similarity
169
+
170
+ * Dataset: `sts-dev`
171
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
172
+
173
+ | Metric | Value |
174
+ |:--------------------|:-----------|
175
+ | pearson_cosine | 0.9254 |
176
+ | **spearman_cosine** | **0.7134** |
177
+
178
+ #### Semantic Similarity
179
+
180
+ * Dataset: `sts-dev`
181
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
182
+
183
+ | Metric | Value |
184
+ |:--------------------|:-----------|
185
+ | pearson_cosine | 0.9424 |
186
+ | **spearman_cosine** | **0.7842** |
187
+
188
+ <!--
189
+ ## Bias, Risks and Limitations
190
+
191
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
192
+ -->
193
+
194
+ <!--
195
+ ### Recommendations
196
+
197
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
198
+ -->
199
+
200
+ ## Training Details
201
+
202
+ ### Training Dataset
203
+
204
+ #### json
205
+
206
+ * Dataset: json
207
+ * Size: 3,385 training samples
208
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
209
+ * Approximate statistics based on the first 1000 samples:
210
+ | | sentence1 | sentence2 | label |
211
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
212
+ | type | string | string | float |
213
+ | details | <ul><li>min: 3 tokens</li><li>mean: 25.95 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 20.92 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
214
+ * Samples:
215
+ | sentence1 | sentence2 | label |
216
+ |:-------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|:-----------------|
217
+ | <code>The American Express, |The American Express 2025 Boost - Max $100 Bet|</code> | <code>Reed, Patrick - De Jager, Louis</code> | <code>0.0</code> |
218
+ | <code>The American Express, |The American Express 2025| - |Round 3 Group Markets| - |Max McGreevy| vs. |Hayden Buckley|</code> | <code>Mitsubishi Electric Championship, |YE Yang| |vs| |KJ Choi|</code> | <code>0.0</code> |
219
+ | <code>Hero Dubai Desert Classic, Pieters v Norgaard</code> | <code>The American Express, |The American Express 2025| - |Round 2 Group Markets| - |Greyson Sigg| vs. |Vince Whaley|</code> | <code>0.0</code> |
220
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
221
+ ```json
222
+ {
223
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
224
+ "margin": 0.5,
225
+ "size_average": true
226
+ }
227
+ ```
228
+
229
+ ### Evaluation Dataset
230
+
231
+ #### json
232
+
233
+ * Dataset: json
234
+ * Size: 3,385 evaluation samples
235
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
236
+ * Approximate statistics based on the first 1000 samples:
237
+ | | sentence1 | sentence2 | label |
238
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
239
+ | type | string | string | float |
240
+ | details | <ul><li>min: 12 tokens</li><li>mean: 25.68 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.25 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
241
+ * Samples:
242
+ | sentence1 | sentence2 | label |
243
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
244
+ | <code>The American Express, |The American Express 2025| - |Round 3 Group Markets| - |Max McGreevy| vs. |Hayden Buckley|</code> | <code>Hero Dubai Desert Classic, Jeong weon Ko v Matt Wallace v Joost Luiten - R3</code> | <code>0.0</code> |
245
+ | <code>Hero Dubai Desert Classic, |Hero Dubai Desert Classic 2025| - |Round 2 Group Markets| - |Pablo Larrazabal|/|Adrian Meronk|/|Alexander Bjork|</code> | <code>Sharma, Shubhankar - Harrington, Padraig</code> | <code>0.0</code> |
246
+ | <code>Hero Dubai Desert Classic, Pieters v Norgaard</code> | <code>The American Express, |The American Express 2025| - |Round 2 Group Markets| - |Christiaan Bezuidenhout| vs. |Harris English|</code> | <code>0.0</code> |
247
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
248
+ ```json
249
+ {
250
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
251
+ "margin": 0.5,
252
+ "size_average": true
253
+ }
254
+ ```
255
+
256
+ ### Training Hyperparameters
257
+ #### Non-Default Hyperparameters
258
+
259
+ - `eval_strategy`: steps
260
+ - `per_device_train_batch_size`: 32
261
+ - `per_device_eval_batch_size`: 32
262
+ - `learning_rate`: 2e-05
263
+ - `num_train_epochs`: 1
264
+ - `warmup_ratio`: 0.1
265
+ - `fp16`: True
266
+ - `batch_sampler`: no_duplicates
267
+
268
+ #### All Hyperparameters
269
+ <details><summary>Click to expand</summary>
270
+
271
+ - `overwrite_output_dir`: False
272
+ - `do_predict`: False
273
+ - `eval_strategy`: steps
274
+ - `prediction_loss_only`: True
275
+ - `per_device_train_batch_size`: 32
276
+ - `per_device_eval_batch_size`: 32
277
+ - `per_gpu_train_batch_size`: None
278
+ - `per_gpu_eval_batch_size`: None
279
+ - `gradient_accumulation_steps`: 1
280
+ - `eval_accumulation_steps`: None
281
+ - `torch_empty_cache_steps`: None
282
+ - `learning_rate`: 2e-05
283
+ - `weight_decay`: 0.0
284
+ - `adam_beta1`: 0.9
285
+ - `adam_beta2`: 0.999
286
+ - `adam_epsilon`: 1e-08
287
+ - `max_grad_norm`: 1.0
288
+ - `num_train_epochs`: 1
289
+ - `max_steps`: -1
290
+ - `lr_scheduler_type`: linear
291
+ - `lr_scheduler_kwargs`: {}
292
+ - `warmup_ratio`: 0.1
293
+ - `warmup_steps`: 0
294
+ - `log_level`: passive
295
+ - `log_level_replica`: warning
296
+ - `log_on_each_node`: True
297
+ - `logging_nan_inf_filter`: True
298
+ - `save_safetensors`: True
299
+ - `save_on_each_node`: False
300
+ - `save_only_model`: False
301
+ - `restore_callback_states_from_checkpoint`: False
302
+ - `no_cuda`: False
303
+ - `use_cpu`: False
304
+ - `use_mps_device`: False
305
+ - `seed`: 42
306
+ - `data_seed`: None
307
+ - `jit_mode_eval`: False
308
+ - `use_ipex`: False
309
+ - `bf16`: False
310
+ - `fp16`: True
311
+ - `fp16_opt_level`: O1
312
+ - `half_precision_backend`: auto
313
+ - `bf16_full_eval`: False
314
+ - `fp16_full_eval`: False
315
+ - `tf32`: None
316
+ - `local_rank`: 0
317
+ - `ddp_backend`: None
318
+ - `tpu_num_cores`: None
319
+ - `tpu_metrics_debug`: False
320
+ - `debug`: []
321
+ - `dataloader_drop_last`: False
322
+ - `dataloader_num_workers`: 0
323
+ - `dataloader_prefetch_factor`: None
324
+ - `past_index`: -1
325
+ - `disable_tqdm`: False
326
+ - `remove_unused_columns`: True
327
+ - `label_names`: None
328
+ - `load_best_model_at_end`: False
329
+ - `ignore_data_skip`: False
330
+ - `fsdp`: []
331
+ - `fsdp_min_num_params`: 0
332
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
333
+ - `fsdp_transformer_layer_cls_to_wrap`: None
334
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
335
+ - `deepspeed`: None
336
+ - `label_smoothing_factor`: 0.0
337
+ - `optim`: adamw_torch
338
+ - `optim_args`: None
339
+ - `adafactor`: False
340
+ - `group_by_length`: False
341
+ - `length_column_name`: length
342
+ - `ddp_find_unused_parameters`: None
343
+ - `ddp_bucket_cap_mb`: None
344
+ - `ddp_broadcast_buffers`: False
345
+ - `dataloader_pin_memory`: True
346
+ - `dataloader_persistent_workers`: False
347
+ - `skip_memory_metrics`: True
348
+ - `use_legacy_prediction_loop`: False
349
+ - `push_to_hub`: False
350
+ - `resume_from_checkpoint`: None
351
+ - `hub_model_id`: None
352
+ - `hub_strategy`: every_save
353
+ - `hub_private_repo`: None
354
+ - `hub_always_push`: False
355
+ - `gradient_checkpointing`: False
356
+ - `gradient_checkpointing_kwargs`: None
357
+ - `include_inputs_for_metrics`: False
358
+ - `include_for_metrics`: []
359
+ - `eval_do_concat_batches`: True
360
+ - `fp16_backend`: auto
361
+ - `push_to_hub_model_id`: None
362
+ - `push_to_hub_organization`: None
363
+ - `mp_parameters`:
364
+ - `auto_find_batch_size`: False
365
+ - `full_determinism`: False
366
+ - `torchdynamo`: None
367
+ - `ray_scope`: last
368
+ - `ddp_timeout`: 1800
369
+ - `torch_compile`: False
370
+ - `torch_compile_backend`: None
371
+ - `torch_compile_mode`: None
372
+ - `dispatch_batches`: None
373
+ - `split_batches`: None
374
+ - `include_tokens_per_second`: False
375
+ - `include_num_input_tokens_seen`: False
376
+ - `neftune_noise_alpha`: None
377
+ - `optim_target_modules`: None
378
+ - `batch_eval_metrics`: False
379
+ - `eval_on_start`: False
380
+ - `use_liger_kernel`: False
381
+ - `eval_use_gather_object`: False
382
+ - `average_tokens_across_devices`: False
383
+ - `prompts`: None
384
+ - `batch_sampler`: no_duplicates
385
+ - `multi_dataset_batch_sampler`: proportional
386
+
387
+ </details>
388
+
389
+ ### Training Logs
390
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
391
+ |:-----:|:----:|:-------------:|:---------------:|:-----------------------:|
392
+ | 0 | 0 | - | - | 0.7125 |
393
+ | 0.125 | 10 | 0.0246 | - | - |
394
+ | 0.25 | 20 | 0.0041 | - | - |
395
+ | 0.375 | 30 | 0.0007 | - | - |
396
+ | 0.5 | 40 | 0.0026 | - | - |
397
+ | 0.625 | 50 | 0.0035 | 0.0022 | 0.7134 |
398
+ | 0.75 | 60 | 0.0059 | - | - |
399
+ | 0.875 | 70 | 0.001 | - | - |
400
+ | 1.0 | 80 | 0.0035 | - | 0.7842 |
401
+
402
+
403
+ ### Framework Versions
404
+ - Python: 3.11.10
405
+ - Sentence Transformers: 3.3.1
406
+ - Transformers: 4.48.0
407
+ - PyTorch: 2.5.1+cu124
408
+ - Accelerate: 1.3.0
409
+ - Datasets: 3.2.0
410
+ - Tokenizers: 0.21.0
411
+
412
+ ## Citation
413
+
414
+ ### BibTeX
415
+
416
+ #### Sentence Transformers
417
+ ```bibtex
418
+ @inproceedings{reimers-2019-sentence-bert,
419
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
420
+ author = "Reimers, Nils and Gurevych, Iryna",
421
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
422
+ month = "11",
423
+ year = "2019",
424
+ publisher = "Association for Computational Linguistics",
425
+ url = "https://arxiv.org/abs/1908.10084",
426
+ }
427
+ ```
428
+
429
+ #### ContrastiveLoss
430
+ ```bibtex
431
+ @inproceedings{hadsell2006dimensionality,
432
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
433
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
434
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
435
+ year={2006},
436
+ volume={2},
437
+ number={},
438
+ pages={1735-1742},
439
+ doi={10.1109/CVPR.2006.100}
440
+ }
441
+ ```
442
+
443
+ <!--
444
+ ## Glossary
445
+
446
+ *Clearly define terms in order to be accessible across audiences.*
447
+ -->
448
+
449
+ <!--
450
+ ## Model Card Authors
451
+
452
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
453
+ -->
454
+
455
+ <!--
456
+ ## Model Card Contact
457
+
458
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
459
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe5673ff2b1cf5df8b6ae14bf8f6b231483523e6f69c6f23d8e44e6fee1aca59
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff