Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# t5_wikisql_en2SQL
|
2 |
+
---
|
3 |
+
language: en
|
4 |
+
datasets:
|
5 |
+
- wikisql
|
6 |
+
---
|
7 |
+
|
8 |
+
This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [wikisql dataset](https://huggingface.co/datasets/wikisql) for **English** to **SQL** **translation** text2text mission.
|
9 |
+
|
10 |
+
To load the model:
|
11 |
+
(necessary packages: !pip install transformers sentencepiece)
|
12 |
+
```python
|
13 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/t5_wikisql_en2SQL")
|
15 |
+
model = AutoModelWithLMHead.from_pretrained("dbernsohn/t5_wikisql_en2SQL")
|
16 |
+
```
|
17 |
+
|
18 |
+
You can then use this model to translate SQL queries into plain english.
|
19 |
+
|
20 |
+
```python
|
21 |
+
query = "what is the name of all the people in the USA?"
|
22 |
+
input_text = f"translate English to Sql: {query} </s>"
|
23 |
+
features = tokenizer([input_text], return_tensors='pt')
|
24 |
+
|
25 |
+
output = model.generate(input_ids=features['input_ids'].cuda(),
|
26 |
+
attention_mask=features['attention_mask'].cuda())
|
27 |
+
|
28 |
+
tokenizer.decode(output[0])
|
29 |
+
```
|
30 |
+
Output: "SELECT Name FROM table WHERE Country = USA"
|
31 |
+
|
32 |
+
The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/SQLM)
|
33 |
+
|
34 |
+
> Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
|