dawn78 commited on
Commit
972f9fa
·
verified ·
1 Parent(s): 23d3bde

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7022
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: nike indigo man presents an invigorating blend that captures the
12
+ essence of modern masculinity with a fresh and woody character launched in 2015
13
+ this fragrance seamlessly weaves together vibrant citrus notes and aromatic spices
14
+ offering an energizing experience that is both elegant and bold users describe
15
+ it as sophisticated yet approachable making it perfect for daily wear or special
16
+ occasions the fragrance elicits feelings of confidence and freshness with many
17
+ appreciating its unique combination of floral nuances balanced by warm earthy
18
+ undertones reviewers frequently note its impressively longlasting quality allowing
19
+ its captivating scent to linger throughout the day with a solid rating of 388
20
+ nike indigo man is lauded not only for its wellrounded olfactory profile but also
21
+ for its ability to leave a lasting impression embodying both vigor and refinement
22
+ sentences:
23
+ - ozonic notes
24
+ - cedar
25
+ - earthy notes
26
+ - source_sentence: nike indigo man presents an invigorating blend that captures the
27
+ essence of modern masculinity with a fresh and woody character launched in 2015
28
+ this fragrance seamlessly weaves together vibrant citrus notes and aromatic spices
29
+ offering an energizing experience that is both elegant and bold users describe
30
+ it as sophisticated yet approachable making it perfect for daily wear or special
31
+ occasions the fragrance elicits feelings of confidence and freshness with many
32
+ appreciating its unique combination of floral nuances balanced by warm earthy
33
+ undertones reviewers frequently note its impressively longlasting quality allowing
34
+ its captivating scent to linger throughout the day with a solid rating of 388
35
+ nike indigo man is lauded not only for its wellrounded olfactory profile but also
36
+ for its ability to leave a lasting impression embodying both vigor and refinement
37
+ sentences:
38
+ - amber
39
+ - cypress
40
+ - ivy
41
+ - source_sentence: named after the novel of the same name by poet and aviator antoine
42
+ de saintexupery the perfume is a tribute to women who like to take risks
43
+ sentences:
44
+ - pear
45
+ - fruity notes
46
+ - woody notes
47
+ - source_sentence: basi femme by armand basi exudes a playful yet sophisticated charm
48
+ that captures the essence of femininity launched in 2000 this fragrance envelops
49
+ wearers in a delightful bouquet of floral and fruity elements balanced by warm
50
+ and comforting undertones users describe it as sweet and aromatic with hints of
51
+ soft spice that create a captivating allure the scent is often praised for its
52
+ versatility making it suitable for both day and evening wear feedback highlights
53
+ its elegance and freshness which evoke a sense of confidence and joy many appreciate
54
+ its soft yet distinct presence noting how it leaves a lasting impression without
55
+ overwhelming the senses the overall mood is uplifting and approachable perfect
56
+ for the modern woman who seeks to express her individuality while remaining effortlessly
57
+ chic with a solid rating from its community basi femme resonates as a timeless
58
+ fragrance choice celebrated for its inviting and warm character
59
+ sentences:
60
+ - citrus notes
61
+ - fig leaf
62
+ - jasmine petal
63
+ - source_sentence: lalibela by memo paris is an enchanting fragrance that transports
64
+ you to a lush garden awash with the vibrancy of blooming flowers this scent harmoniously
65
+ blends rich floral notes with a warm sweet undertone creating a captivating atmosphere
66
+ that feels both opulent and inviting the essence of tender blooms is beautifully
67
+ complemented by a hint of creamy sweetness enveloping the wearer in a soft and
68
+ sensuous embrace users describe lalibela as a sophisticated and luxurious perfume
69
+ often noting its unique complexity that unfolds throughout the day with a cozy
70
+ warmth reminiscent of cherished memories it evokes feelings of comfort and elegance
71
+ many appreciate its longlasting presence making it a favorite for both day and
72
+ evening wear reviewers highlight the fragrances ability to turn heads leaving
73
+ a memorable impression without being overwhelming overall lalibela is a masterful
74
+ olfactory experience that embodies the spirit of femininity perfect for those
75
+ seeking a signature scent infused with both richness and charm
76
+ sentences:
77
+ - vanilla
78
+ - cypress
79
+ - green notes
80
+ pipeline_tag: sentence-similarity
81
+ library_name: sentence-transformers
82
+ metrics:
83
+ - pearson_cosine
84
+ - spearman_cosine
85
+ model-index:
86
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
87
+ results:
88
+ - task:
89
+ type: semantic-similarity
90
+ name: Semantic Similarity
91
+ dataset:
92
+ name: Unknown
93
+ type: unknown
94
+ metrics:
95
+ - type: pearson_cosine
96
+ value: 0.9221809753640012
97
+ name: Pearson Cosine
98
+ - type: spearman_cosine
99
+ value: 0.8309208495457832
100
+ name: Spearman Cosine
101
+ ---
102
+
103
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
104
+
105
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
106
+
107
+ ## Model Details
108
+
109
+ ### Model Description
110
+ - **Model Type:** Sentence Transformer
111
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
112
+ - **Maximum Sequence Length:** 256 tokens
113
+ - **Output Dimensionality:** 384 dimensions
114
+ - **Similarity Function:** Cosine Similarity
115
+ <!-- - **Training Dataset:** Unknown -->
116
+ <!-- - **Language:** Unknown -->
117
+ <!-- - **License:** Unknown -->
118
+
119
+ ### Model Sources
120
+
121
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
122
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
123
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
124
+
125
+ ### Full Model Architecture
126
+
127
+ ```
128
+ SentenceTransformer(
129
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
130
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
131
+ (2): Normalize()
132
+ )
133
+ ```
134
+
135
+ ## Usage
136
+
137
+ ### Direct Usage (Sentence Transformers)
138
+
139
+ First install the Sentence Transformers library:
140
+
141
+ ```bash
142
+ pip install -U sentence-transformers
143
+ ```
144
+
145
+ Then you can load this model and run inference.
146
+ ```python
147
+ from sentence_transformers import SentenceTransformer
148
+
149
+ # Download from the 🤗 Hub
150
+ model = SentenceTransformer("sentence_transformers_model_id")
151
+ # Run inference
152
+ sentences = [
153
+ 'lalibela by memo paris is an enchanting fragrance that transports you to a lush garden awash with the vibrancy of blooming flowers this scent harmoniously blends rich floral notes with a warm sweet undertone creating a captivating atmosphere that feels both opulent and inviting the essence of tender blooms is beautifully complemented by a hint of creamy sweetness enveloping the wearer in a soft and sensuous embrace users describe lalibela as a sophisticated and luxurious perfume often noting its unique complexity that unfolds throughout the day with a cozy warmth reminiscent of cherished memories it evokes feelings of comfort and elegance many appreciate its longlasting presence making it a favorite for both day and evening wear reviewers highlight the fragrances ability to turn heads leaving a memorable impression without being overwhelming overall lalibela is a masterful olfactory experience that embodies the spirit of femininity perfect for those seeking a signature scent infused with both richness and charm',
154
+ 'vanilla',
155
+ 'green notes',
156
+ ]
157
+ embeddings = model.encode(sentences)
158
+ print(embeddings.shape)
159
+ # [3, 384]
160
+
161
+ # Get the similarity scores for the embeddings
162
+ similarities = model.similarity(embeddings, embeddings)
163
+ print(similarities.shape)
164
+ # [3, 3]
165
+ ```
166
+
167
+ <!--
168
+ ### Direct Usage (Transformers)
169
+
170
+ <details><summary>Click to see the direct usage in Transformers</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Downstream Usage (Sentence Transformers)
177
+
178
+ You can finetune this model on your own dataset.
179
+
180
+ <details><summary>Click to expand</summary>
181
+
182
+ </details>
183
+ -->
184
+
185
+ <!--
186
+ ### Out-of-Scope Use
187
+
188
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
189
+ -->
190
+
191
+ ## Evaluation
192
+
193
+ ### Metrics
194
+
195
+ #### Semantic Similarity
196
+
197
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
198
+
199
+ | Metric | Value |
200
+ |:--------------------|:-----------|
201
+ | pearson_cosine | 0.9222 |
202
+ | **spearman_cosine** | **0.8309** |
203
+
204
+ <!--
205
+ ## Bias, Risks and Limitations
206
+
207
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
208
+ -->
209
+
210
+ <!--
211
+ ### Recommendations
212
+
213
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
214
+ -->
215
+
216
+ ## Training Details
217
+
218
+ ### Training Dataset
219
+
220
+ #### Unnamed Dataset
221
+
222
+
223
+ * Size: 7,022 training samples
224
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | sentence_0 | sentence_1 | label |
227
+ |:--------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
228
+ | type | string | string | float |
229
+ | details | <ul><li>min: 12 tokens</li><li>mean: 178.91 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.93 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
230
+ * Samples:
231
+ | sentence_0 | sentence_1 | label |
232
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------|:-----------------|
233
+ | <code>americas by mahogany is an invigorating fragrance crafted for the modern man embodying the spirit of adventure and exploration this scent opens with a refreshing burst that hints at invigorating elements balanced with a spicy warmth that captivates the senses users often describe it as a harmonious blend of fresh and woody accords creating an atmosphere that is both vibrant and grounding this perfumes unique composition has garnered praise for its longevity and versatility making it suitable for both day and evening wear reviewers highlight its ability to evoke a sense of confidence and sophistication likening its character to a breezy stroll through verdant landscapes complemented by hints of rich aromatic woods the overall mood is one of refined masculinity inviting wearers to embrace their individuality while leaving a memorable impression with a commendable rating of 426 out of 5 americas resonates with those seeking a fragrance that is fresh yet complex encapsulating the essence o...</code> | <code>black pepper</code> | <code>1.0</code> |
234
+ | <code>rosa gallica by brecourt is an exquisite unisex fragrance that encapsulates a warm and inviting aura perfect for those who appreciate the elegance of nature intertwined with a touch of mystique with its alluring blend of floral and woody elements this fragrance wraps the wearer in a soft balsamic embrace that evokes a sense of serene sophistication crafted by renowned perfumer emilie bouge rosa gallica has garnered a favorable reception from users who describe it as both captivating and refined reviewers often highlight its unique combination of spicy warmth and delicate floral notes creating an atmosphere that is both romantic and grounded its celebrated for its longevity allowing the wearer to carry its gentle yet complex character throughout the day fans of this fragrance appreciate its versatility noting it as suitable for both day and evening wear with many finding it perfect for cooler weather the overall sentiment points to a fragrance that feels timeless and elegant evoking the...</code> | <code>pimento</code> | <code>0.0</code> |
235
+ | <code>roberto cavalli nero assoluto is a mesmerizing fragrance that embodies a rich and sensual experience perfect for the confident modern woman with its intriguing blend of velvety florals and warm undertones this perfume radiates an aura of elegance and sophistication users frequently describe it as both alluring and comforting invoking sensations of nightfall enhanced by an embrace of soft sweetness the fragrance opens with captivating floral notes that invite curiosity and provide a fresh inviting introduction as it evolves deeper and warmer accords emerge creating a luxurious complexity that many wearers find addictive the interplay between the sweet and powdery elements gives it a creamy enveloping quality that makes it an excellent choice for evening wear or special occasions with an impressive rating from fragrance enthusiasts many reviewers appreciate its longevity and sillage stating that it lingers beautifully without being overpowering the overall impression of nero assoluto is ...</code> | <code>blonde woods</code> | <code>1.0</code> |
236
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
237
+ ```json
238
+ {
239
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
240
+ }
241
+ ```
242
+
243
+ ### Training Hyperparameters
244
+ #### Non-Default Hyperparameters
245
+
246
+ - `eval_strategy`: steps
247
+ - `per_device_train_batch_size`: 32
248
+ - `per_device_eval_batch_size`: 32
249
+ - `num_train_epochs`: 4
250
+ - `multi_dataset_batch_sampler`: round_robin
251
+
252
+ #### All Hyperparameters
253
+ <details><summary>Click to expand</summary>
254
+
255
+ - `overwrite_output_dir`: False
256
+ - `do_predict`: False
257
+ - `eval_strategy`: steps
258
+ - `prediction_loss_only`: True
259
+ - `per_device_train_batch_size`: 32
260
+ - `per_device_eval_batch_size`: 32
261
+ - `per_gpu_train_batch_size`: None
262
+ - `per_gpu_eval_batch_size`: None
263
+ - `gradient_accumulation_steps`: 1
264
+ - `eval_accumulation_steps`: None
265
+ - `torch_empty_cache_steps`: None
266
+ - `learning_rate`: 5e-05
267
+ - `weight_decay`: 0.0
268
+ - `adam_beta1`: 0.9
269
+ - `adam_beta2`: 0.999
270
+ - `adam_epsilon`: 1e-08
271
+ - `max_grad_norm`: 1
272
+ - `num_train_epochs`: 4
273
+ - `max_steps`: -1
274
+ - `lr_scheduler_type`: linear
275
+ - `lr_scheduler_kwargs`: {}
276
+ - `warmup_ratio`: 0.0
277
+ - `warmup_steps`: 0
278
+ - `log_level`: passive
279
+ - `log_level_replica`: warning
280
+ - `log_on_each_node`: True
281
+ - `logging_nan_inf_filter`: True
282
+ - `save_safetensors`: True
283
+ - `save_on_each_node`: False
284
+ - `save_only_model`: False
285
+ - `restore_callback_states_from_checkpoint`: False
286
+ - `no_cuda`: False
287
+ - `use_cpu`: False
288
+ - `use_mps_device`: False
289
+ - `seed`: 42
290
+ - `data_seed`: None
291
+ - `jit_mode_eval`: False
292
+ - `use_ipex`: False
293
+ - `bf16`: False
294
+ - `fp16`: False
295
+ - `fp16_opt_level`: O1
296
+ - `half_precision_backend`: auto
297
+ - `bf16_full_eval`: False
298
+ - `fp16_full_eval`: False
299
+ - `tf32`: None
300
+ - `local_rank`: 0
301
+ - `ddp_backend`: None
302
+ - `tpu_num_cores`: None
303
+ - `tpu_metrics_debug`: False
304
+ - `debug`: []
305
+ - `dataloader_drop_last`: False
306
+ - `dataloader_num_workers`: 0
307
+ - `dataloader_prefetch_factor`: None
308
+ - `past_index`: -1
309
+ - `disable_tqdm`: False
310
+ - `remove_unused_columns`: True
311
+ - `label_names`: None
312
+ - `load_best_model_at_end`: False
313
+ - `ignore_data_skip`: False
314
+ - `fsdp`: []
315
+ - `fsdp_min_num_params`: 0
316
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
317
+ - `fsdp_transformer_layer_cls_to_wrap`: None
318
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
319
+ - `deepspeed`: None
320
+ - `label_smoothing_factor`: 0.0
321
+ - `optim`: adamw_torch
322
+ - `optim_args`: None
323
+ - `adafactor`: False
324
+ - `group_by_length`: False
325
+ - `length_column_name`: length
326
+ - `ddp_find_unused_parameters`: None
327
+ - `ddp_bucket_cap_mb`: None
328
+ - `ddp_broadcast_buffers`: False
329
+ - `dataloader_pin_memory`: True
330
+ - `dataloader_persistent_workers`: False
331
+ - `skip_memory_metrics`: True
332
+ - `use_legacy_prediction_loop`: False
333
+ - `push_to_hub`: False
334
+ - `resume_from_checkpoint`: None
335
+ - `hub_model_id`: None
336
+ - `hub_strategy`: every_save
337
+ - `hub_private_repo`: None
338
+ - `hub_always_push`: False
339
+ - `gradient_checkpointing`: False
340
+ - `gradient_checkpointing_kwargs`: None
341
+ - `include_inputs_for_metrics`: False
342
+ - `include_for_metrics`: []
343
+ - `eval_do_concat_batches`: True
344
+ - `fp16_backend`: auto
345
+ - `push_to_hub_model_id`: None
346
+ - `push_to_hub_organization`: None
347
+ - `mp_parameters`:
348
+ - `auto_find_batch_size`: False
349
+ - `full_determinism`: False
350
+ - `torchdynamo`: None
351
+ - `ray_scope`: last
352
+ - `ddp_timeout`: 1800
353
+ - `torch_compile`: False
354
+ - `torch_compile_backend`: None
355
+ - `torch_compile_mode`: None
356
+ - `dispatch_batches`: None
357
+ - `split_batches`: None
358
+ - `include_tokens_per_second`: False
359
+ - `include_num_input_tokens_seen`: False
360
+ - `neftune_noise_alpha`: None
361
+ - `optim_target_modules`: None
362
+ - `batch_eval_metrics`: False
363
+ - `eval_on_start`: False
364
+ - `use_liger_kernel`: False
365
+ - `eval_use_gather_object`: False
366
+ - `average_tokens_across_devices`: False
367
+ - `prompts`: None
368
+ - `batch_sampler`: batch_sampler
369
+ - `multi_dataset_batch_sampler`: round_robin
370
+
371
+ </details>
372
+
373
+ ### Training Logs
374
+ | Epoch | Step | Training Loss | spearman_cosine |
375
+ |:------:|:----:|:-------------:|:---------------:|
376
+ | 0.2273 | 50 | - | 0.2856 |
377
+ | 0.4545 | 100 | - | 0.7237 |
378
+ | 0.6818 | 150 | - | 0.7814 |
379
+ | 0.9091 | 200 | - | 0.8037 |
380
+ | 1.0 | 220 | - | 0.8096 |
381
+ | 1.1364 | 250 | - | 0.8067 |
382
+ | 1.3636 | 300 | - | 0.8130 |
383
+ | 1.5909 | 350 | - | 0.8195 |
384
+ | 1.8182 | 400 | - | 0.8221 |
385
+ | 2.0 | 440 | - | 0.8222 |
386
+ | 2.0455 | 450 | - | 0.8229 |
387
+ | 2.2727 | 500 | 0.0988 | 0.8177 |
388
+ | 2.5 | 550 | - | 0.8277 |
389
+ | 2.7273 | 600 | - | 0.8273 |
390
+ | 2.9545 | 650 | - | 0.8287 |
391
+ | 3.0 | 660 | - | 0.8287 |
392
+ | 3.1818 | 700 | - | 0.8269 |
393
+ | 3.4091 | 750 | - | 0.8295 |
394
+ | 3.6364 | 800 | - | 0.8301 |
395
+ | 3.8636 | 850 | - | 0.8306 |
396
+ | 4.0 | 880 | - | 0.8309 |
397
+
398
+
399
+ ### Framework Versions
400
+ - Python: 3.11.11
401
+ - Sentence Transformers: 3.3.1
402
+ - Transformers: 4.47.1
403
+ - PyTorch: 2.5.1+cu124
404
+ - Accelerate: 1.2.1
405
+ - Datasets: 3.2.0
406
+ - Tokenizers: 0.21.0
407
+
408
+ ## Citation
409
+
410
+ ### BibTeX
411
+
412
+ #### Sentence Transformers
413
+ ```bibtex
414
+ @inproceedings{reimers-2019-sentence-bert,
415
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
416
+ author = "Reimers, Nils and Gurevych, Iryna",
417
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
418
+ month = "11",
419
+ year = "2019",
420
+ publisher = "Association for Computational Linguistics",
421
+ url = "https://arxiv.org/abs/1908.10084",
422
+ }
423
+ ```
424
+
425
+ <!--
426
+ ## Glossary
427
+
428
+ *Clearly define terms in order to be accessible across audiences.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Authors
433
+
434
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Contact
439
+
440
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
441
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a4a09e046c9d294c5abfe2256b727f4fc75eddd4ad5f8736c245b5cab3f1519
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff