davidschulte commited on
Commit
4953e17
·
verified ·
1 Parent(s): 1762d7c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +66 -16
README.md CHANGED
@@ -27,8 +27,10 @@ ESM
27
  - **Base Model:** bert-base-multilingual-uncased
28
  - **Intermediate Task:** cardiffnlp/tweet_sentiment_multilingual
29
  - **ESM architecture:** linear
 
30
  - **Language(s) (NLP):** [More Information Needed]
31
  - **License:** Apache-2.0 license
 
32
 
33
  ## Training Details
34
 
@@ -74,14 +76,24 @@ MSE:
74
  ### Additional evaluation details [optional]
75
 
76
 
 
 
77
 
78
- ## What are Embedding Space Maps?
 
 
79
 
80
- <!-- This section describes the evaluation protocols and provides the results. -->
81
- Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
82
- ESMs can be used for intermediate task selection with the ESM-LogME workflow.
83
 
84
- ## How can I use Embedding Space Maps for Intermediate Task Selection?
 
 
 
 
 
 
 
85
  [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
86
 
87
  We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
@@ -111,27 +123,65 @@ task_ranking = compute_task_ranking(
111
  # Display top 5 recommendations
112
  print(task_ranking[:5])
113
  ```
 
 
 
 
 
 
 
114
 
115
- For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  ## Citation
118
 
119
 
120
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
121
- If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
122
 
123
  **BibTeX:**
124
 
125
 
126
  ```
127
- @misc{schulte2024moreparameterefficientselectionintermediate,
128
- title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
129
- author={David Schulte and Felix Hamborg and Alan Akbik},
130
- year={2024},
131
- eprint={2410.15148},
132
- archivePrefix={arXiv},
133
- primaryClass={cs.CL},
134
- url={https://arxiv.org/abs/2410.15148},
 
 
 
 
 
 
 
 
 
135
  }
136
  ```
137
 
@@ -139,7 +189,7 @@ If you are using this Embedding Space Maps, please cite our [paper](https://arxi
139
  **APA:**
140
 
141
  ```
142
- Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
143
  ```
144
 
145
  ## Additional Information
 
27
  - **Base Model:** bert-base-multilingual-uncased
28
  - **Intermediate Task:** cardiffnlp/tweet_sentiment_multilingual
29
  - **ESM architecture:** linear
30
+ - **ESM embedding dimension:** [More Information Needed]
31
  - **Language(s) (NLP):** [More Information Needed]
32
  - **License:** Apache-2.0 license
33
+ - **ESM version:** 0.1.0
34
 
35
  ## Training Details
36
 
 
76
  ### Additional evaluation details [optional]
77
 
78
 
79
+ ## What are Embedding Space Maps used for?
80
+ Embedding Space Maps are a part of ESM-LogME, a efficient method for finding intermediate datasets for transfer learning. There are two reasons to use ESM-LogME:
81
 
82
+ ### You don't have enough training data for your problem
83
+ If you don't have a enough training data for your problem, just use ESM-LogME to find more.
84
+ You can supplement model training by including publicly available datasets in the training process.
85
 
86
+ 1. Fine-tune a language model on suitable intermediate dataset.
87
+ 2. Fine-tune the resulting model on your target dataset.
 
88
 
89
+ This workflow is called intermediate task transfer learning and it can significantly improve the target performance.
90
+
91
+ But what is a suitable dataset for your problem? ESM-LogME enable you to quickly rank thousands of datasets on the Hugging Face Hub by how well they are exptected to transfer to your target task.
92
+
93
+ ### You want to find similar datasets to your target dataset
94
+ Using ESM-LogME can be used like search engine on the Hugging Face Hub. You can find similar tasks to your target task without having to rely on heuristics. ESM-LogME estimates how language models fine-tuned on each intermediate task would benefinit your target task. This quantitative approach combines the effects of domain similarity and task similarity.
95
+
96
+ ## How can I use ESM-LogME / ESMs?
97
  [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
98
 
99
  We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
 
123
  # Display top 5 recommendations
124
  print(task_ranking[:5])
125
  ```
126
+ ```python
127
+ 1. davanstrien/test_imdb_embedd2 Score: -0.618529
128
+ 2. davanstrien/test_imdb_embedd Score: -0.618644
129
+ 3. davanstrien/test1 Score: -0.619334
130
+ 4. stanfordnlp/imdb Score: -0.619454
131
+ 5. stanfordnlp/sst Score: -0.62995
132
+ ```
133
 
134
+ | Rank | Task ID | Task Subset | Text Column | Label Column | Task Split | Num Examples | ESM Architecture | Score |
135
+ |-------:|:------------------------------|:----------------|:--------------|:---------------|:-------------|---------------:|:-------------------|----------:|
136
+ | 1 | davanstrien/test_imdb_embedd2 | default | text | label | train | 10000 | linear | -0.618529 |
137
+ | 2 | davanstrien/test_imdb_embedd | default | text | label | train | 10000 | linear | -0.618644 |
138
+ | 3 | davanstrien/test1 | default | text | label | train | 10000 | linear | -0.619334 |
139
+ | 4 | stanfordnlp/imdb | plain_text | text | label | train | 10000 | linear | -0.619454 |
140
+ | 5 | stanfordnlp/sst | dictionary | phrase | label | dictionary | 10000 | linear | -0.62995 |
141
+ | 6 | stanfordnlp/sst | default | sentence | label | train | 8544 | linear | -0.63312 |
142
+ | 7 | kuroneko5943/snap21 | CDs_and_Vinyl_5 | sentence | label | train | 6974 | linear | -0.634365 |
143
+ | 8 | kuroneko5943/snap21 | Video_Games_5 | sentence | label | train | 6997 | linear | -0.638787 |
144
+ | 9 | kuroneko5943/snap21 | Movies_and_TV_5 | sentence | label | train | 6989 | linear | -0.639068 |
145
+ | 10 | fancyzhx/amazon_polarity | amazon_polarity | content | label | train | 10000 | linear | -0.639718 |
146
+
147
+ For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector). We provide documentation further documentation and tutorials for finding intermediate datasets and training your own ESMs.
148
+
149
+
150
+ ## How do Embedding Space Maps work?
151
+
152
+ <!-- This section describes the evaluation protocols and provides the results. -->
153
+ Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
154
+ ESMs can be used for intermediate task selection with the ESM-LogME workflow.
155
+
156
+ ## How can I use Embedding Space Maps for Intermediate Task Selection?
157
 
158
  ## Citation
159
 
160
 
161
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
162
+ If you are using this Embedding Space Maps, please cite our [paper](https://aclanthology.org/2024.emnlp-main.529/).
163
 
164
  **BibTeX:**
165
 
166
 
167
  ```
168
+ @inproceedings{schulte-etal-2024-less,
169
+ title = "Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning",
170
+ author = "Schulte, David and
171
+ Hamborg, Felix and
172
+ Akbik, Alan",
173
+ editor = "Al-Onaizan, Yaser and
174
+ Bansal, Mohit and
175
+ Chen, Yun-Nung",
176
+ booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
177
+ month = nov,
178
+ year = "2024",
179
+ address = "Miami, Florida, USA",
180
+ publisher = "Association for Computational Linguistics",
181
+ url = "https://aclanthology.org/2024.emnlp-main.529/",
182
+ doi = "10.18653/v1/2024.emnlp-main.529",
183
+ pages = "9431--9442",
184
+ abstract = "Intermediate task transfer learning can greatly improve model performance. If, for example, one has little training data for emotion detection, first fine-tuning a language model on a sentiment classification dataset may improve performance strongly. But which task to choose for transfer learning? Prior methods producing useful task rankings are infeasible for large source pools, as they require forward passes through all source language models. We overcome this by introducing Embedding Space Maps (ESMs), light-weight neural networks that approximate the effect of fine-tuning a language model. We conduct the largest study on NLP task transferability and task selection with 12k source-target pairs. We find that applying ESMs on a prior method reduces execution time and disk space usage by factors of 10 and 278, respectively, while retaining high selection performance (avg. regret@5 score of 2.95)."
185
  }
186
  ```
187
 
 
189
  **APA:**
190
 
191
  ```
192
+ Schulte, D., Hamborg, F., & Akbik, A. (2024, November). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (pp. 9431-9442).
193
  ```
194
 
195
  ## Additional Information