davidschulte commited on
Commit
29f6e69
·
verified ·
1 Parent(s): 2c572bd

Push model using huggingface_hub.

Browse files
Files changed (3) hide show
  1. README.md +5 -143
  2. config.json +64 -2
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,147 +1,9 @@
1
  ---
2
- base_model: google-bert/bert-base-uncased
3
- datasets:
4
- - prithivMLmods/Spam-Text-Detect-Analysis
5
- license: apache-2.0
6
  tags:
7
- - embedding_space_map
8
- - BaseLM:google-bert/bert-base-uncased
9
  ---
10
 
11
- # ESM prithivMLmods/Spam-Text-Detect-Analysis
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
-
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
- ESM
24
-
25
- - **Developed by:** [Unknown]
26
- - **Model type:** ESM
27
- - **Base Model:** google-bert/bert-base-uncased
28
- - **Intermediate Task:** prithivMLmods/Spam-Text-Detect-Analysis
29
- - **ESM architecture:** linear
30
- - **ESM embedding dimension:** 768
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** Apache-2.0 license
33
-
34
- ## Training Details
35
-
36
- ### Intermediate Task
37
- - **Task ID:** prithivMLmods/Spam-Text-Detect-Analysis
38
- - **Subset [optional]:**
39
- - **Text Column:** Message
40
- - **Label Column:** Category
41
- - **Dataset Split:** train
42
- - **Sample size [optional]:** 1000
43
- - **Sample seed [optional]:**
44
-
45
- ### Training Procedure [optional]
46
-
47
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
48
-
49
- #### Language Model Training Hyperparameters [optional]
50
- - **Epochs:** [More Information Needed]
51
- - **Batch size:** [More Information Needed]
52
- - **Learning rate:** [More Information Needed]
53
- - **Weight Decay:** [More Information Needed]
54
- - **Optimizer**: [More Information Needed]
55
-
56
- ### ESM Training Hyperparameters [optional]
57
- - **Epochs:** 10
58
- - **Batch size:** 32
59
- - **Learning rate:** 0.001
60
- - **Weight Decay:** 0.01
61
- - **Optimizer**: [More Information Needed]
62
-
63
-
64
- ### Additional trainiung details [optional]
65
-
66
-
67
- ## Model evaluation
68
-
69
- ### Evaluation of fine-tuned language model [optional]
70
-
71
-
72
- ### Evaluation of ESM [optional]
73
- MSE:
74
-
75
- ### Additional evaluation details [optional]
76
-
77
-
78
-
79
- ## What are Embedding Space Maps?
80
-
81
- <!-- This section describes the evaluation protocols and provides the results. -->
82
- Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
83
- ESMs can be used for intermediate task selection with the ESM-LogME workflow.
84
-
85
- ## How can I use Embedding Space Maps for Intermediate Task Selection?
86
- [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
87
-
88
- We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
89
-
90
- **hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
91
-
92
- ```python
93
- from hfselect import Dataset, compute_task_ranking
94
-
95
- # Load target dataset from the Hugging Face Hub
96
- dataset = Dataset.from_hugging_face(
97
- name="stanfordnlp/imdb",
98
- split="train",
99
- text_col="text",
100
- label_col="label",
101
- is_regression=False,
102
- num_examples=1000,
103
- seed=42
104
- )
105
-
106
- # Fetch ESMs and rank tasks
107
- task_ranking = compute_task_ranking(
108
- dataset=dataset,
109
- model_name="bert-base-multilingual-uncased"
110
- )
111
-
112
- # Display top 5 recommendations
113
- print(task_ranking[:5])
114
- ```
115
-
116
- For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
117
-
118
- ## Citation
119
-
120
-
121
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
122
- If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
123
-
124
- **BibTeX:**
125
-
126
-
127
- ```
128
- @misc{schulte2024moreparameterefficientselectionintermediate,
129
- title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
130
- author={David Schulte and Felix Hamborg and Alan Akbik},
131
- year={2024},
132
- eprint={2410.15148},
133
- archivePrefix={arXiv},
134
- primaryClass={cs.CL},
135
- url={https://arxiv.org/abs/2410.15148},
136
- }
137
- ```
138
-
139
-
140
- **APA:**
141
-
142
- ```
143
- Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
144
- ```
145
-
146
- ## Additional Information
147
-
 
1
  ---
 
 
 
 
2
  tags:
3
+ - model_hub_mixin
4
+ - pytorch_model_hub_mixin
5
  ---
6
 
7
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
+ - Library: [More Information Needed]
9
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,27 +1,89 @@
1
  {
 
 
 
 
 
2
  "base_model_name": "google-bert/bert-base-uncased",
 
 
 
 
 
3
  "developers": null,
 
 
 
 
 
4
  "esm_architecture": "linear",
5
  "esm_batch_size": 32,
6
  "esm_embedding_dim": 768,
7
- "esm_learning_rate": 0.001,
8
  "esm_num_epochs": 10,
9
  "esm_optimizer": null,
10
  "esm_weight_decay": 0.01,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  "label_column": "Category",
12
  "language": null,
 
13
  "lm_batch_size": null,
14
  "lm_learning_rate": null,
15
  "lm_num_epochs": null,
16
  "lm_optimizer": null,
17
  "lm_weight_decay": null,
 
 
 
 
 
 
18
  "num_examples": 1000,
 
 
 
 
 
 
 
 
 
 
 
 
19
  "seed": null,
 
20
  "streamed": false,
 
21
  "task_id": "prithivMLmods/Spam-Text-Detect-Analysis",
 
22
  "task_split": "train",
23
  "task_subset": null,
 
24
  "text_column": "Message",
 
 
 
 
 
 
 
 
25
  "transformers_version": "4.47.1",
 
 
26
  "version": "0.2.0"
27
- }
 
1
  {
2
+ "_attn_implementation_autoset": false,
3
+ "_name_or_path": "",
4
+ "add_cross_attention": false,
5
+ "architectures": null,
6
+ "bad_words_ids": null,
7
  "base_model_name": "google-bert/bert-base-uncased",
8
+ "begin_suppress_tokens": null,
9
+ "bos_token_id": null,
10
+ "chunk_size_feed_forward": 0,
11
+ "cross_attention_hidden_size": null,
12
+ "decoder_start_token_id": null,
13
  "developers": null,
14
+ "diversity_penalty": 0.0,
15
+ "do_sample": false,
16
+ "early_stopping": false,
17
+ "encoder_no_repeat_ngram_size": 0,
18
+ "eos_token_id": null,
19
  "esm_architecture": "linear",
20
  "esm_batch_size": 32,
21
  "esm_embedding_dim": 768,
22
+ "esm_learning_rate": 0.01,
23
  "esm_num_epochs": 10,
24
  "esm_optimizer": null,
25
  "esm_weight_decay": 0.01,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "id2label": {
31
+ "0": "LABEL_0",
32
+ "1": "LABEL_1"
33
+ },
34
+ "is_decoder": false,
35
+ "is_encoder_decoder": false,
36
+ "label2id": {
37
+ "LABEL_0": 0,
38
+ "LABEL_1": 1
39
+ },
40
  "label_column": "Category",
41
  "language": null,
42
+ "length_penalty": 1.0,
43
  "lm_batch_size": null,
44
  "lm_learning_rate": null,
45
  "lm_num_epochs": null,
46
  "lm_optimizer": null,
47
  "lm_weight_decay": null,
48
+ "max_length": 20,
49
+ "min_length": 0,
50
+ "model_type": "",
51
+ "no_repeat_ngram_size": 0,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
  "num_examples": 1000,
55
+ "num_return_sequences": 1,
56
+ "output_attentions": false,
57
+ "output_hidden_states": false,
58
+ "output_scores": false,
59
+ "pad_token_id": null,
60
+ "prefix": null,
61
+ "problem_type": null,
62
+ "pruned_heads": {},
63
+ "remove_invalid_values": false,
64
+ "repetition_penalty": 1.0,
65
+ "return_dict": true,
66
+ "return_dict_in_generate": false,
67
  "seed": null,
68
+ "sep_token_id": null,
69
  "streamed": false,
70
+ "suppress_tokens": null,
71
  "task_id": "prithivMLmods/Spam-Text-Detect-Analysis",
72
+ "task_specific_params": null,
73
  "task_split": "train",
74
  "task_subset": null,
75
+ "temperature": 1.0,
76
  "text_column": "Message",
77
+ "tf_legacy_loss": false,
78
+ "tie_encoder_decoder": false,
79
+ "tie_word_embeddings": true,
80
+ "tokenizer_class": null,
81
+ "top_k": 50,
82
+ "top_p": 1.0,
83
+ "torch_dtype": null,
84
+ "torchscript": false,
85
  "transformers_version": "4.47.1",
86
+ "typical_p": 1.0,
87
+ "use_bfloat16": false,
88
  "version": "0.2.0"
89
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fcd6e6aebba89435b42ee3abd0c3d2030bd07df55b32738deaa0ec81f29775dd
3
  size 2362528
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c341a7ec672afe7740ce0321d8e7ed2901050c6e2cf658eaac9941e176aedd4
3
  size 2362528