Commit
·
903abf5
1
Parent(s):
090121f
Upload PPO LunarLander-v2 trained agent, 1st try, 1000000 steps
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2b.zip +3 -0
- ppo-LunarLander-v2b/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2b/data +94 -0
- ppo-LunarLander-v2b/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2b/policy.pth +3 -0
- ppo-LunarLander-v2b/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2b/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 264.77 +/- 19.78
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973d235dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973d235e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973d235ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973d235f80>", "_build": "<function ActorCriticPolicy._build at 0x7f973d23c050>", "forward": "<function ActorCriticPolicy.forward at 0x7f973d23c0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973d23c170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f973d23c200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973d23c290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973d23c320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973d23c3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f973d27bd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgCexyBc+kPmsFTF1hrDZrwKPN4MyBsKbF2tos/lQDOgk7j9I06bdo7uHv2RngmoM4z5ZrCZLexcmC/ElgJAkuAJMsvv7AzeFUwgPibhEYkJQOelD3Di8JVAWtJAkXY89CDMO0qyOsQzpNOWTYPRWYK2Uj4vAXvKNCz23TkLAbW7s7tQqyCwEEfDKzGycMl7kX5kfDjOlvghbeQNqBnRTjpioYDz/rIf0AL5McGl7G8oYu/xS6uE9eQLELK7MG/4AS+8lZAS1P/Cg/b2llZMjzF7QVxNHCpoPa3gL/5mVL67+1+ufmyfLaJePlaPoHCK7pxt7ulUvIjnOMJtg1g9Dn6bDv+x0cAT5TVLYn48Us4QVmR8rGuu6LLC+3aWbePzRf7VClUuShnWFlhSg16kfYaySOceSop6l+xpuo33wmsdX7JTpC66upcV6xa6sH34nyMOhnPPvawsKwqqZgji0G3Jih+HdT3DlejbMBRpShR+tG7jJBZ3mLKx3d4iCYQjiWwDMZi2267Nx1LqAtli8949FpajjDuBPRaaek1EEVuNGHVxfuy/G85GOhue6x8P8gj1RqDFErnGIOSrWVmSCA39kgNon4XZvvHq91O9sKPHlrLMyJtA1VYGL8zvkJJX0IwBNpuuzDl+CyGI/T+mZshLKTq7sl6nYpQNJMIiAkz7XME8m1QjyK3Jis6VhBSKI3HMCJWQFT1SYWaukNXPpewLb5s93YTDs+DnyL+B0DxE0TYIjOdS8AV4z9D3dMxszKvpd4a8Rl30FcSRlOM8+Gd4oZc+RfM5sfAfPnWFByVdgVYi+TFKvDFx2u0e6EDdVEdHWa+XcUnIE2nckiqBdlpv2+s9Yi6754RaVfByqLJlP386rkO2VKkE58KjdzE1TBUxDv73bFrMQpde8Ng3NSG7GBIymwYx5qWprPwg9csGj1obZxicw3LlmwLGdfRnwFjrisJ8c/JR0O5rwm6oeT7yZaELCI1g/cTqN+p7kaLL4JLUU1hTmfd4uCm8+qEG9tboqDmKGvzS0vhMk+beHKNnueldNQWTU8f6HA+HsTRL/8Ctpi5N0jFBW56soshf9z3xYKkkqAoYh0IOBl6N7NNxZm0FGi0I9SMeFJt7r1/gWnSZnYlfJUMaY4mafUFT/eXRoyPmMMFt12e57XPyYPPc98tIkrt3Qcrw2JTA3qovs15Q4WewK4Q+IW4QjpxGPC54E0Rynanm045SEOeEomKixFXVWolCnInmwVoZIjtXeimHDPvrc+x25BTrnnLp8d/VqovfzDk2IT/omD1eQk0ioI9LYN76rDszYOlwanBx9HGfKh4Y1VRgje0FFAUCg7D4FIalxk/FoJ6sJDzJpph8o2arhPCcdWYhg8QAWrnbw9RI8P75kbdeFTAjpZCJVOgJWHSwzgiuDz5AQyHmeZOyzx88JJDLtIoFKnFZSQTkbsLr0sSAuxQ9g1wyUrfrap+D4K7f1xMGww7KPQreay2qiMrTcunaO41dJqh9aNIQd+MJTe54nqPtTwc6GK6TrzQ0+mGmH3bEpotkFoQXOaen5wQE+DEHdjCxSBd2o+yJtCVSfidUwJx7XNWYvQzGkqZDBopSu/bwx5NnlDYPwFGDbMga7yWU2a06xoQwy2LY4a7HaumC2OVuO5+RQ49Hze0JHxs8oM6SpMSXvCwCRuE1MpqYIwSgt9b94c40/zO23ClVKuIFSb4pQlnl3GimW9Il/45aXTpXSbOw4SLfci8ogYWysnkmIvKb0ypQcdudgmBEbvj/02xihlV9Ww6cBgK/SlrvBAXn5bcqyZH4/9cAWE2eZfioFuwtlQkfzuovHmLmALiNz+I5gAMfUYN7qjmvbum1656TZUoNenb80ieiqDkL3HTEdX36hxx4Q2RExRAFTXTggYxql7YEBBlOMz+4gAlq1TkWSf6c+T3X9H/iMkb2HxT0FxphFyN/AIZ7LLdFIEn7ntYMfWUXd3QDHOUbcAfgWGvUliP2xeLXZvcOJXHeYVT6m2pxqQwtPgVn5bltwNFhMf+cKQyr/mZcMcH3NXKENnamTYvXcNOEptRSo5bMd0+P9K+oc9pJrZxPU7gnIN7bTwQLNxCSZ1mCPLgN68Yu5ATcJ9PUH6p4tYxh9p4Kai4vegMYR97CumH9YY6VnBAi70PY0D1aI/PpBxfLhOmTaAggRXy2hER1cQQikTG+VOccedWuJ8ehuEkbrxAfc4Wl0Wi1guC4V25Oi23Zoq8Hvtl4bxoFHvawqK1J5wP5YTP3SIDtGDuyfFULJEa/1e7uqh89cbJa4tF1DuZdBKUnqnOrMmBd5ZJDEU0uQzvm7bybZjM6I9IO2qqIS1Yey51/N/2UZD6CgutnfyawbHnjFnQkk2pACFh/aDChFnnTN9ks7Tps5kDTyUTYep8ewMXchdaUkj0tWPw4pdQsbwg94YJNYGFJoNb4p5+yG0n9l8/1A6YtEYritJIQ1RX3tpUU+P08dkUuNl1hSMf9qau5LJ8VYVBrjoTxmVD648F0mR0bIfZK2QOFoxwjMcVPu/WQJLXrR50qbIyA2XI/SNsr1Jr8QYN6QraKDj9wl7GjBw4Rub+MSyJ/NMdGWjKt9vfDKjXz1AxtGJ4kvZiVextno7nEn2hsFXTsavI+2m0i/PH9938UW0Ba8ewEuWWi0MIUZ7DXjIWFetHEhwmKaJff6fLbnz/XrIQb77fSeAILjTdrGJZrw8dzj0ri/5oMMCY2RFdNgvNBIgo+ZgdL/fXResNRijCa9BIPEpoCtzo0Imn0UxCLJOfyw6o8pUcQGChvMHWtAm5xAo4KtDaWm6nbCO2fkBk4gdb8K1H0LtZvO1LlrkBk9PzwbMI+2fCV3UmBpmuFmHDxH7WQ65hVfiu8KF3jVKI5syoMZ9YK9+Ejc906OAmxZnORe38gT90X/kjQVtuaXbSg2E5mpRYqWOJz7ifYo1o05uufL3A12NXF+deAQTbrqB8NLqvH6iUP6uak5ermaSIxql3Bm4Va/E/BLGm7FHlNpwqg4xgeh2wgwv4bPCc/N5p+b4P/naR5wP8vbMhY8Ff0QozfZiH9ByuHBVVXkh2fgj8eTttA6xaoGc2WP5MFDFiH2SWAtniM+QkHfmnCqTIW0tTK/rF+YTNY2aJYt6fzmM3L8ZThnhjr9hF07IjY+/CR2dziLsj1Bla7Jc65g7WReGPVEO5JHXNcDj7rB0JOeUX0xS+JlrBsUCxpWGf+NkcZDBGiT1kKeuojxCKK03Hg5PmNtF07qbfVK2hJvjz6XR+WFLOaXgPZfwBSigQ2BwTqZKIk+cavmqcIhyfAtskZKlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 1338180289, "action_noise": null, "start_time": 1651974264.702253, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA5zr1IBYK675AZvFs6ybWyIwI7xe03NQAAgD8AAAAADQRHvkgCx7zI/Yk+RDcgvndgHT3kQSe+AACAPwAAgD9TQzc+YiHmPouscL2mljW+1gKGPTqLOz0AAAAAAAAAAM2EYjsomeY+Y0eJvVrDkr6VIbC8+p0ePQAAAAAAAAAAgGJEPVw7arpMV0G6b4hotUNHTbiOo2E5AACAPwAAgD9NLiW9XDzAP9TEoL4950I+A9rPvN7v+b0AAAAAAAAAAABaBTx7woa6U1kwN6kuSzJhfPs5105MtgAAgD8AAIA/mg4vvjp9rz7qQXI+g7qwvlB5nD3IR849AAAAAAAAAACT700+4dmwvNEnNrs5HJU5UG0bvn6baToAAIA/AACAPzMXkzwbcWw/4yJPPS9OzL6GAvg86G19vAAAAAAAAAAAALYQPK4BhboXI8Y4tDMetuSIvjnT8OG3AACAPwAAgD8afVk9b54ePZVIGL4tMiG+7LlqvKkUq70AAAAAAAAAAIZROj6gYyQ/XF0AvsKQeb5Nehw+diWYvQAAAAAAAAAAzZZePc8CK7zIJK28pc0UPXWtjD1mPu+9AACAPwAAgD9N0yk96If2PYg+ir0bOWS+2YhTPRnLnr0AAAAAAAAAAEDnyL3OwLg/aYkNv8IL4L1TbqG9p4+jvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrJDyk+q9b0CUhpRSlIwBbJRNaAGMAXSUR0CWZQo0ygwodX2UKGgGaAloD0MIMZQT7aoMcECUhpRSlGgVTSkBaBZHQJZlJg+hXbN1fZQoaAZoCWgPQwiUoL/QIzdvQJSGlFKUaBVN5QJoFkdAlmhchkiD/XV9lChoBmgJaA9DCMqnx7YMK3JAlIaUUpRoFU3UAWgWR0CWaJBNVR1pdX2UKGgGaAloD0MI6bmFrgQ4cUCUhpRSlGgVTccCaBZHQJZrs9lmOEN1fZQoaAZoCWgPQwiOPBBZpJZvQJSGlFKUaBVNYgFoFkdAlmvcK5TZQHV9lChoBmgJaA9DCP2H9NtXhGBAlIaUUpRoFU3oA2gWR0CWbPzbeuV5dX2UKGgGaAloD0MIhGdCkwSAcECUhpRSlGgVTSIBaBZHQJZvcAAAAAB1fZQoaAZoCWgPQwjf36C9+vVxQJSGlFKUaBVNBAFoFkdAlm+Upy6tknV9lChoBmgJaA9DCHbG98WlUiVAlIaUUpRoFUv+aBZHQJZv3WK/Efl1fZQoaAZoCWgPQwjWxtgJ73dyQJSGlFKUaBVNrANoFkdAlogZOnEVFnV9lChoBmgJaA9DCGa8rfRawG1AlIaUUpRoFU1cAWgWR0CWiRGGVRk3dX2UKGgGaAloD0MIQ61p3rHccECUhpRSlGgVTYcCaBZHQJaLCb2Dg651fZQoaAZoCWgPQwjG/NzQVHhxQJSGlFKUaBVNTAFoFkdAlouoomXw9nV9lChoBmgJaA9DCCTRyygWQG9AlIaUUpRoFU1JAWgWR0CWi7ZhrnDBdX2UKGgGaAloD0MINe1imulqOECUhpRSlGgVS7VoFkdAlovBQvYe1nV9lChoBmgJaA9DCPBN02eH6WxAlIaUUpRoFU23AWgWR0CWjYzijtXxdX2UKGgGaAloD0MINSiaBzA5cUCUhpRSlGgVTUQCaBZHQJaNjNpudf91fZQoaAZoCWgPQwggnE8d6+BxQJSGlFKUaBVNFAFoFkdAlo+5TVDrq3V9lChoBmgJaA9DCPvOL0rQrW1AlIaUUpRoFU2kAWgWR0CWkq6hxo7FdX2UKGgGaAloD0MIcnDpmDPhcECUhpRSlGgVTa4BaBZHQJaTVFspG4J1fZQoaAZoCWgPQwhwXMZNTS1wQJSGlFKUaBVNewNoFkdAlpO/dIoVmHV9lChoBmgJaA9DCHicoiM5im9AlIaUUpRoFU2wAWgWR0CWlIz3yqdZdX2UKGgGaAloD0MIfGKdKt+qb0CUhpRSlGgVTQkBaBZHQJaVeahHskZ1fZQoaAZoCWgPQwgqx2Rx/4pwQJSGlFKUaBVNnwFoFkdAlpYGLtNSInV9lChoBmgJaA9DCFGf5A6bIWNAlIaUUpRoFU3oA2gWR0CWmA3uuzQedX2UKGgGaAloD0MIuaerO5ZqcECUhpRSlGgVTVgBaBZHQJaYCHVPN3Z1fZQoaAZoCWgPQwjWUkDa/9lvQJSGlFKUaBVNIQFoFkdAlpiqs2eg+XV9lChoBmgJaA9DCKbxC6/kSHBAlIaUUpRoFU1aAWgWR0CWnQm1pj+adX2UKGgGaAloD0MIPkD35cxPXkCUhpRSlGgVTegDaBZHQJadYSBbwBp1fZQoaAZoCWgPQwjec2A5QhI3QJSGlFKUaBVLvmgWR0CWnmaRp1zRdX2UKGgGaAloD0MIL/zgfOp0cUCUhpRSlGgVTbEBaBZHQJaelaX8fmt1fZQoaAZoCWgPQwhOtKuQ8gBxQJSGlFKUaBVNtAFoFkdAlp9WdNFjNXV9lChoBmgJaA9DCCz1LAjlVUpAlIaUUpRoFUvFaBZHQJagx9hJAdJ1fZQoaAZoCWgPQwivmXyzTQNxQJSGlFKUaBVNOAFoFkdAlqEiXUpd8nV9lChoBmgJaA9DCK0UArlEBmxAlIaUUpRoFU0AAWgWR0CWo1jKPn0TdX2UKGgGaAloD0MIvHSTGMQDcECUhpRSlGgVTYIBaBZHQJaj3F72L511fZQoaAZoCWgPQwhPBHEeztJuQJSGlFKUaBVNTgFoFkdAlqQypvP1MHV9lChoBmgJaA9DCK4oJQTrOnBAlIaUUpRoFU1zAWgWR0CWpM9yLhrFdX2UKGgGaAloD0MI++dpwKB+bkCUhpRSlGgVTTUCaBZHQJak4xJul411fZQoaAZoCWgPQwgjFcYWwpRxQJSGlFKUaBVNNAJoFkdAlqgtRm9QGnV9lChoBmgJaA9DCFuYhXZOe3JAlIaUUpRoFU10AWgWR0CWqHAOavzOdX2UKGgGaAloD0MIvHX+7bImcECUhpRSlGgVTSYBaBZHQJapiO4oZyd1fZQoaAZoCWgPQwg8TzxnC5BtQJSGlFKUaBVNZwFoFkdAlqwj6N2ki3V9lChoBmgJaA9DCGGkF7X7S0dAlIaUUpRoFUvBaBZHQJassBGQSzx1fZQoaAZoCWgPQwjAeXHia1hyQJSGlFKUaBVNXAFoFkdAlqzy3kPtlnV9lChoBmgJaA9DCLGk3H2OF3JAlIaUUpRoFU1QAWgWR0CWrzuWrwOOdX2UKGgGaAloD0MIyXISSh/ccUCUhpRSlGgVTZcBaBZHQJav0l+mWMV1fZQoaAZoCWgPQwiwHYzY52hwQJSGlFKUaBVNmAFoFkdAlrImG7Bfr3V9lChoBmgJaA9DCNRgGobPVHFAlIaUUpRoFU1HAWgWR0CWsqnkDIRzdX2UKGgGaAloD0MICi3r/nGrcUCUhpRSlGgVTWMBaBZHQJazKExqO951fZQoaAZoCWgPQwiFBmLZDAZwQJSGlFKUaBVN4gFoFkdAlrPHNxEORXV9lChoBmgJaA9DCM1y2ehc5HFAlIaUUpRoFU2gAWgWR0CW0KUBGQS0dX2UKGgGaAloD0MIcqjfhS3TcUCUhpRSlGgVTckBaBZHQJbRv2f02+B1fZQoaAZoCWgPQwgHms+5GwJxQJSGlFKUaBVNPwFoFkdAltKEoKD02HV9lChoBmgJaA9DCMIzoUliqG5AlIaUUpRoFU0NAWgWR0CW03cN6PbPdX2UKGgGaAloD0MIeLRxxNpoY0CUhpRSlGgVTegDaBZHQJbTxmRNh3J1fZQoaAZoCWgPQwjVPbK5KsdwQJSGlFKUaBVNOwFoFkdAltSCuU2UCHV9lChoBmgJaA9DCLVug9qvc3FAlIaUUpRoFU00AWgWR0CW1K5SFXaKdX2UKGgGaAloD0MI0a3X9OCTcECUhpRSlGgVTX8DaBZHQJbUyt5le4V1fZQoaAZoCWgPQwgXK2owTYZwQJSGlFKUaBVNAQFoFkdAltTYEW69TXV9lChoBmgJaA9DCNPAj2pYXnBAlIaUUpRoFU26AWgWR0CW1ceoUBXCdX2UKGgGaAloD0MIzLT9K+uocECUhpRSlGgVTQoBaBZHQJbXEnqmj0t1fZQoaAZoCWgPQwjHuU24V8ZtQJSGlFKUaBVNTgFoFkdAlteWLcbiqHV9lChoBmgJaA9DCP6ABwYQrklAlIaUUpRoFUvaaBZHQJbY9CWu5jJ1fZQoaAZoCWgPQwg6PITxk2xxQJSGlFKUaBVNRAFoFkdAltlRddE9dXV9lChoBmgJaA9DCHNp/MIre0FAlIaUUpRoFUvBaBZHQJbZtPCVKPJ1fZQoaAZoCWgPQwi7tOGwNGxJQJSGlFKUaBVLyGgWR0CW3MIZqEeydX2UKGgGaAloD0MImZ1F79TicECUhpRSlGgVTY8BaBZHQJbdfGlyimF1fZQoaAZoCWgPQwheK6G7pHRyQJSGlFKUaBVNcwFoFkdAlt3XcYZVGXV9lChoBmgJaA9DCHMR34kZbnBAlIaUUpRoFU0uAWgWR0CW3peMQ2/BdX2UKGgGaAloD0MIyNPyA9eBcECUhpRSlGgVTdABaBZHQJbfmNrCWNZ1fZQoaAZoCWgPQwgLYTWWcI1wQJSGlFKUaBVNaQFoFkdAlt+vvKEFn3V9lChoBmgJaA9DCBE4EmgwcXFAlIaUUpRoFU00AWgWR0CW4BODJ2dNdX2UKGgGaAloD0MI4EigwWYwckCUhpRSlGgVTQEBaBZHQJbg2fAbhm51fZQoaAZoCWgPQwiH+IctvWFwQJSGlFKUaBVN8wJoFkdAluEo/eLvTnV9lChoBmgJaA9DCHA/4IFBinJAlIaUUpRoFU0aAWgWR0CW4l3NcGC7dX2UKGgGaAloD0MIEjP7PIbJcUCUhpRSlGgVTYcBaBZHQJbi5tYSxqx1fZQoaAZoCWgPQwipaoKoO4BwQJSGlFKUaBVNjgFoFkdAluNAR9PUKHV9lChoBmgJaA9DCMnlP6Tf6klAlIaUUpRoFUvLaBZHQJbkhGvwEyN1fZQoaAZoCWgPQwhHA3gLpENwQJSGlFKUaBVNIQFoFkdAluTawQlKLHV9lChoBmgJaA9DCG7A54fRuHFAlIaUUpRoFU3KAWgWR0CW5QOrQw9JdX2UKGgGaAloD0MIWMudmWBccUCUhpRSlGgVTT0BaBZHQJblZrdnCfp1fZQoaAZoCWgPQwhAo3TpX31wQJSGlFKUaBVNSwFoFkdAluV/dRBNVXV9lChoBmgJaA9DCKLtmLoronBAlIaUUpRoFU0mAWgWR0CW6EpNbkfcdX2UKGgGaAloD0MIMGR1q+e2b0CUhpRSlGgVTTwBaBZHQJbo1xIatLd1fZQoaAZoCWgPQwhvgm+avsZtQJSGlFKUaBVNPwFoFkdAlunnRLK3eHV9lChoBmgJaA9DCGb1DrcDzXJAlIaUUpRoFU02AWgWR0CW6m5nUUfxdX2UKGgGaAloD0MIbTZWYp6EcECUhpRSlGgVTSoBaBZHQJbrrA0sOG11fZQoaAZoCWgPQwhUcHhBxN1xQJSGlFKUaBVNCAFoFkdAluxBE0BOpXV9lChoBmgJaA9DCOIhjJ/GtmxAlIaUUpRoFU0uAWgWR0CW7TCGetjkdX2UKGgGaAloD0MI71TAPY+hcECUhpRSlGgVTSUBaBZHQJbtyA9V3ll1fZQoaAZoCWgPQwgNHTuoBLRwQJSGlFKUaBVNdgFoFkdAlu5SsXBP9HV9lChoBmgJaA9DCBppqbwdmnFAlIaUUpRoFU23AWgWR0CW73yvs7dSdX2UKGgGaAloD0MIn1kSoCZ9b0CUhpRSlGgVTSQBaBZHQJbwHv+fh/B1fZQoaAZoCWgPQwhpOGVuvllwQJSGlFKUaBVNTAFoFkdAlvE4sAeaKHV9lChoBmgJaA9DCCPYuP7daHJAlIaUUpRoFU1jAWgWR0CW8fLi++M7dX2UKGgGaAloD0MIXhCRmnY5cUCUhpRSlGgVTREBaBZHQJby2bUgB911fZQoaAZoCWgPQwjjx5i71q9yQJSGlFKUaBVNmAFoFkdAlvTWCI1tO3V9lChoBmgJaA9DCH/7OnAOznBAlIaUUpRoFU0dAWgWR0CW9QazNUwSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2b.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70a5246febcb1ea004f7329e7271b97e4babb584d0988966411979994143be64
|
3 |
+
size 147705
|
ppo-LunarLander-v2b/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2b/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f973d235dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973d235e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973d235ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973d235f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f973d23c050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f973d23c0e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973d23c170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f973d23c200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973d23c290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973d23c320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973d23c3b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f973d27bd20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgCexyBc+kPmsFTF1hrDZrwKPN4MyBsKbF2tos/lQDOgk7j9I06bdo7uHv2RngmoM4z5ZrCZLexcmC/ElgJAkuAJMsvv7AzeFUwgPibhEYkJQOelD3Di8JVAWtJAkXY89CDMO0qyOsQzpNOWTYPRWYK2Uj4vAXvKNCz23TkLAbW7s7tQqyCwEEfDKzGycMl7kX5kfDjOlvghbeQNqBnRTjpioYDz/rIf0AL5McGl7G8oYu/xS6uE9eQLELK7MG/4AS+8lZAS1P/Cg/b2llZMjzF7QVxNHCpoPa3gL/5mVL67+1+ufmyfLaJePlaPoHCK7pxt7ulUvIjnOMJtg1g9Dn6bDv+x0cAT5TVLYn48Us4QVmR8rGuu6LLC+3aWbePzRf7VClUuShnWFlhSg16kfYaySOceSop6l+xpuo33wmsdX7JTpC66upcV6xa6sH34nyMOhnPPvawsKwqqZgji0G3Jih+HdT3DlejbMBRpShR+tG7jJBZ3mLKx3d4iCYQjiWwDMZi2267Nx1LqAtli8949FpajjDuBPRaaek1EEVuNGHVxfuy/G85GOhue6x8P8gj1RqDFErnGIOSrWVmSCA39kgNon4XZvvHq91O9sKPHlrLMyJtA1VYGL8zvkJJX0IwBNpuuzDl+CyGI/T+mZshLKTq7sl6nYpQNJMIiAkz7XME8m1QjyK3Jis6VhBSKI3HMCJWQFT1SYWaukNXPpewLb5s93YTDs+DnyL+B0DxE0TYIjOdS8AV4z9D3dMxszKvpd4a8Rl30FcSRlOM8+Gd4oZc+RfM5sfAfPnWFByVdgVYi+TFKvDFx2u0e6EDdVEdHWa+XcUnIE2nckiqBdlpv2+s9Yi6754RaVfByqLJlP386rkO2VKkE58KjdzE1TBUxDv73bFrMQpde8Ng3NSG7GBIymwYx5qWprPwg9csGj1obZxicw3LlmwLGdfRnwFjrisJ8c/JR0O5rwm6oeT7yZaELCI1g/cTqN+p7kaLL4JLUU1hTmfd4uCm8+qEG9tboqDmKGvzS0vhMk+beHKNnueldNQWTU8f6HA+HsTRL/8Ctpi5N0jFBW56soshf9z3xYKkkqAoYh0IOBl6N7NNxZm0FGi0I9SMeFJt7r1/gWnSZnYlfJUMaY4mafUFT/eXRoyPmMMFt12e57XPyYPPc98tIkrt3Qcrw2JTA3qovs15Q4WewK4Q+IW4QjpxGPC54E0Rynanm045SEOeEomKixFXVWolCnInmwVoZIjtXeimHDPvrc+x25BTrnnLp8d/VqovfzDk2IT/omD1eQk0ioI9LYN76rDszYOlwanBx9HGfKh4Y1VRgje0FFAUCg7D4FIalxk/FoJ6sJDzJpph8o2arhPCcdWYhg8QAWrnbw9RI8P75kbdeFTAjpZCJVOgJWHSwzgiuDz5AQyHmeZOyzx88JJDLtIoFKnFZSQTkbsLr0sSAuxQ9g1wyUrfrap+D4K7f1xMGww7KPQreay2qiMrTcunaO41dJqh9aNIQd+MJTe54nqPtTwc6GK6TrzQ0+mGmH3bEpotkFoQXOaen5wQE+DEHdjCxSBd2o+yJtCVSfidUwJx7XNWYvQzGkqZDBopSu/bwx5NnlDYPwFGDbMga7yWU2a06xoQwy2LY4a7HaumC2OVuO5+RQ49Hze0JHxs8oM6SpMSXvCwCRuE1MpqYIwSgt9b94c40/zO23ClVKuIFSb4pQlnl3GimW9Il/45aXTpXSbOw4SLfci8ogYWysnkmIvKb0ypQcdudgmBEbvj/02xihlV9Ww6cBgK/SlrvBAXn5bcqyZH4/9cAWE2eZfioFuwtlQkfzuovHmLmALiNz+I5gAMfUYN7qjmvbum1656TZUoNenb80ieiqDkL3HTEdX36hxx4Q2RExRAFTXTggYxql7YEBBlOMz+4gAlq1TkWSf6c+T3X9H/iMkb2HxT0FxphFyN/AIZ7LLdFIEn7ntYMfWUXd3QDHOUbcAfgWGvUliP2xeLXZvcOJXHeYVT6m2pxqQwtPgVn5bltwNFhMf+cKQyr/mZcMcH3NXKENnamTYvXcNOEptRSo5bMd0+P9K+oc9pJrZxPU7gnIN7bTwQLNxCSZ1mCPLgN68Yu5ATcJ9PUH6p4tYxh9p4Kai4vegMYR97CumH9YY6VnBAi70PY0D1aI/PpBxfLhOmTaAggRXy2hER1cQQikTG+VOccedWuJ8ehuEkbrxAfc4Wl0Wi1guC4V25Oi23Zoq8Hvtl4bxoFHvawqK1J5wP5YTP3SIDtGDuyfFULJEa/1e7uqh89cbJa4tF1DuZdBKUnqnOrMmBd5ZJDEU0uQzvm7bybZjM6I9IO2qqIS1Yey51/N/2UZD6CgutnfyawbHnjFnQkk2pACFh/aDChFnnTN9ks7Tps5kDTyUTYep8ewMXchdaUkj0tWPw4pdQsbwg94YJNYGFJoNb4p5+yG0n9l8/1A6YtEYritJIQ1RX3tpUU+P08dkUuNl1hSMf9qau5LJ8VYVBrjoTxmVD648F0mR0bIfZK2QOFoxwjMcVPu/WQJLXrR50qbIyA2XI/SNsr1Jr8QYN6QraKDj9wl7GjBw4Rub+MSyJ/NMdGWjKt9vfDKjXz1AxtGJ4kvZiVextno7nEn2hsFXTsavI+2m0i/PH9938UW0Ba8ewEuWWi0MIUZ7DXjIWFetHEhwmKaJff6fLbnz/XrIQb77fSeAILjTdrGJZrw8dzj0ri/5oMMCY2RFdNgvNBIgo+ZgdL/fXResNRijCa9BIPEpoCtzo0Imn0UxCLJOfyw6o8pUcQGChvMHWtAm5xAo4KtDaWm6nbCO2fkBk4gdb8K1H0LtZvO1LlrkBk9PzwbMI+2fCV3UmBpmuFmHDxH7WQ65hVfiu8KF3jVKI5syoMZ9YK9+Ejc906OAmxZnORe38gT90X/kjQVtuaXbSg2E5mpRYqWOJz7ifYo1o05uufL3A12NXF+deAQTbrqB8NLqvH6iUP6uak5ermaSIxql3Bm4Va/E/BLGm7FHlNpwqg4xgeh2wgwv4bPCc/N5p+b4P/naR5wP8vbMhY8Ff0QozfZiH9ByuHBVVXkh2fgj8eTttA6xaoGc2WP5MFDFiH2SWAtniM+QkHfmnCqTIW0tTK/rF+YTNY2aJYt6fzmM3L8ZThnhjr9hF07IjY+/CR2dziLsj1Bla7Jc65g7WReGPVEO5JHXNcDj7rB0JOeUX0xS+JlrBsUCxpWGf+NkcZDBGiT1kKeuojxCKK03Hg5PmNtF07qbfVK2hJvjz6XR+WFLOaXgPZfwBSigQ2BwTqZKIk+cavmqcIhyfAtskZKlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": 1338180289,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651974264.702253,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA5zr1IBYK675AZvFs6ybWyIwI7xe03NQAAgD8AAAAADQRHvkgCx7zI/Yk+RDcgvndgHT3kQSe+AACAPwAAgD9TQzc+YiHmPouscL2mljW+1gKGPTqLOz0AAAAAAAAAAM2EYjsomeY+Y0eJvVrDkr6VIbC8+p0ePQAAAAAAAAAAgGJEPVw7arpMV0G6b4hotUNHTbiOo2E5AACAPwAAgD9NLiW9XDzAP9TEoL4950I+A9rPvN7v+b0AAAAAAAAAAABaBTx7woa6U1kwN6kuSzJhfPs5105MtgAAgD8AAIA/mg4vvjp9rz7qQXI+g7qwvlB5nD3IR849AAAAAAAAAACT700+4dmwvNEnNrs5HJU5UG0bvn6baToAAIA/AACAPzMXkzwbcWw/4yJPPS9OzL6GAvg86G19vAAAAAAAAAAAALYQPK4BhboXI8Y4tDMetuSIvjnT8OG3AACAPwAAgD8afVk9b54ePZVIGL4tMiG+7LlqvKkUq70AAAAAAAAAAIZROj6gYyQ/XF0AvsKQeb5Nehw+diWYvQAAAAAAAAAAzZZePc8CK7zIJK28pc0UPXWtjD1mPu+9AACAPwAAgD9N0yk96If2PYg+ir0bOWS+2YhTPRnLnr0AAAAAAAAAAEDnyL3OwLg/aYkNv8IL4L1TbqG9p4+jvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrJDyk+q9b0CUhpRSlIwBbJRNaAGMAXSUR0CWZQo0ygwodX2UKGgGaAloD0MIMZQT7aoMcECUhpRSlGgVTSkBaBZHQJZlJg+hXbN1fZQoaAZoCWgPQwiUoL/QIzdvQJSGlFKUaBVN5QJoFkdAlmhchkiD/XV9lChoBmgJaA9DCMqnx7YMK3JAlIaUUpRoFU3UAWgWR0CWaJBNVR1pdX2UKGgGaAloD0MI6bmFrgQ4cUCUhpRSlGgVTccCaBZHQJZrs9lmOEN1fZQoaAZoCWgPQwiOPBBZpJZvQJSGlFKUaBVNYgFoFkdAlmvcK5TZQHV9lChoBmgJaA9DCP2H9NtXhGBAlIaUUpRoFU3oA2gWR0CWbPzbeuV5dX2UKGgGaAloD0MIhGdCkwSAcECUhpRSlGgVTSIBaBZHQJZvcAAAAAB1fZQoaAZoCWgPQwjf36C9+vVxQJSGlFKUaBVNBAFoFkdAlm+Upy6tknV9lChoBmgJaA9DCHbG98WlUiVAlIaUUpRoFUv+aBZHQJZv3WK/Efl1fZQoaAZoCWgPQwjWxtgJ73dyQJSGlFKUaBVNrANoFkdAlogZOnEVFnV9lChoBmgJaA9DCGa8rfRawG1AlIaUUpRoFU1cAWgWR0CWiRGGVRk3dX2UKGgGaAloD0MIQ61p3rHccECUhpRSlGgVTYcCaBZHQJaLCb2Dg651fZQoaAZoCWgPQwjG/NzQVHhxQJSGlFKUaBVNTAFoFkdAlouoomXw9nV9lChoBmgJaA9DCCTRyygWQG9AlIaUUpRoFU1JAWgWR0CWi7ZhrnDBdX2UKGgGaAloD0MINe1imulqOECUhpRSlGgVS7VoFkdAlovBQvYe1nV9lChoBmgJaA9DCPBN02eH6WxAlIaUUpRoFU23AWgWR0CWjYzijtXxdX2UKGgGaAloD0MINSiaBzA5cUCUhpRSlGgVTUQCaBZHQJaNjNpudf91fZQoaAZoCWgPQwggnE8d6+BxQJSGlFKUaBVNFAFoFkdAlo+5TVDrq3V9lChoBmgJaA9DCPvOL0rQrW1AlIaUUpRoFU2kAWgWR0CWkq6hxo7FdX2UKGgGaAloD0MIcnDpmDPhcECUhpRSlGgVTa4BaBZHQJaTVFspG4J1fZQoaAZoCWgPQwhwXMZNTS1wQJSGlFKUaBVNewNoFkdAlpO/dIoVmHV9lChoBmgJaA9DCHicoiM5im9AlIaUUpRoFU2wAWgWR0CWlIz3yqdZdX2UKGgGaAloD0MIfGKdKt+qb0CUhpRSlGgVTQkBaBZHQJaVeahHskZ1fZQoaAZoCWgPQwgqx2Rx/4pwQJSGlFKUaBVNnwFoFkdAlpYGLtNSInV9lChoBmgJaA9DCFGf5A6bIWNAlIaUUpRoFU3oA2gWR0CWmA3uuzQedX2UKGgGaAloD0MIuaerO5ZqcECUhpRSlGgVTVgBaBZHQJaYCHVPN3Z1fZQoaAZoCWgPQwjWUkDa/9lvQJSGlFKUaBVNIQFoFkdAlpiqs2eg+XV9lChoBmgJaA9DCKbxC6/kSHBAlIaUUpRoFU1aAWgWR0CWnQm1pj+adX2UKGgGaAloD0MIPkD35cxPXkCUhpRSlGgVTegDaBZHQJadYSBbwBp1fZQoaAZoCWgPQwjec2A5QhI3QJSGlFKUaBVLvmgWR0CWnmaRp1zRdX2UKGgGaAloD0MIL/zgfOp0cUCUhpRSlGgVTbEBaBZHQJaelaX8fmt1fZQoaAZoCWgPQwhOtKuQ8gBxQJSGlFKUaBVNtAFoFkdAlp9WdNFjNXV9lChoBmgJaA9DCCz1LAjlVUpAlIaUUpRoFUvFaBZHQJagx9hJAdJ1fZQoaAZoCWgPQwivmXyzTQNxQJSGlFKUaBVNOAFoFkdAlqEiXUpd8nV9lChoBmgJaA9DCK0UArlEBmxAlIaUUpRoFU0AAWgWR0CWo1jKPn0TdX2UKGgGaAloD0MIvHSTGMQDcECUhpRSlGgVTYIBaBZHQJaj3F72L511fZQoaAZoCWgPQwhPBHEeztJuQJSGlFKUaBVNTgFoFkdAlqQypvP1MHV9lChoBmgJaA9DCK4oJQTrOnBAlIaUUpRoFU1zAWgWR0CWpM9yLhrFdX2UKGgGaAloD0MI++dpwKB+bkCUhpRSlGgVTTUCaBZHQJak4xJul411fZQoaAZoCWgPQwgjFcYWwpRxQJSGlFKUaBVNNAJoFkdAlqgtRm9QGnV9lChoBmgJaA9DCFuYhXZOe3JAlIaUUpRoFU10AWgWR0CWqHAOavzOdX2UKGgGaAloD0MIvHX+7bImcECUhpRSlGgVTSYBaBZHQJapiO4oZyd1fZQoaAZoCWgPQwg8TzxnC5BtQJSGlFKUaBVNZwFoFkdAlqwj6N2ki3V9lChoBmgJaA9DCGGkF7X7S0dAlIaUUpRoFUvBaBZHQJassBGQSzx1fZQoaAZoCWgPQwjAeXHia1hyQJSGlFKUaBVNXAFoFkdAlqzy3kPtlnV9lChoBmgJaA9DCLGk3H2OF3JAlIaUUpRoFU1QAWgWR0CWrzuWrwOOdX2UKGgGaAloD0MIyXISSh/ccUCUhpRSlGgVTZcBaBZHQJav0l+mWMV1fZQoaAZoCWgPQwiwHYzY52hwQJSGlFKUaBVNmAFoFkdAlrImG7Bfr3V9lChoBmgJaA9DCNRgGobPVHFAlIaUUpRoFU1HAWgWR0CWsqnkDIRzdX2UKGgGaAloD0MICi3r/nGrcUCUhpRSlGgVTWMBaBZHQJazKExqO951fZQoaAZoCWgPQwiFBmLZDAZwQJSGlFKUaBVN4gFoFkdAlrPHNxEORXV9lChoBmgJaA9DCM1y2ehc5HFAlIaUUpRoFU2gAWgWR0CW0KUBGQS0dX2UKGgGaAloD0MIcqjfhS3TcUCUhpRSlGgVTckBaBZHQJbRv2f02+B1fZQoaAZoCWgPQwgHms+5GwJxQJSGlFKUaBVNPwFoFkdAltKEoKD02HV9lChoBmgJaA9DCMIzoUliqG5AlIaUUpRoFU0NAWgWR0CW03cN6PbPdX2UKGgGaAloD0MIeLRxxNpoY0CUhpRSlGgVTegDaBZHQJbTxmRNh3J1fZQoaAZoCWgPQwjVPbK5KsdwQJSGlFKUaBVNOwFoFkdAltSCuU2UCHV9lChoBmgJaA9DCLVug9qvc3FAlIaUUpRoFU00AWgWR0CW1K5SFXaKdX2UKGgGaAloD0MI0a3X9OCTcECUhpRSlGgVTX8DaBZHQJbUyt5le4V1fZQoaAZoCWgPQwgXK2owTYZwQJSGlFKUaBVNAQFoFkdAltTYEW69TXV9lChoBmgJaA9DCNPAj2pYXnBAlIaUUpRoFU26AWgWR0CW1ceoUBXCdX2UKGgGaAloD0MIzLT9K+uocECUhpRSlGgVTQoBaBZHQJbXEnqmj0t1fZQoaAZoCWgPQwjHuU24V8ZtQJSGlFKUaBVNTgFoFkdAlteWLcbiqHV9lChoBmgJaA9DCP6ABwYQrklAlIaUUpRoFUvaaBZHQJbY9CWu5jJ1fZQoaAZoCWgPQwg6PITxk2xxQJSGlFKUaBVNRAFoFkdAltlRddE9dXV9lChoBmgJaA9DCHNp/MIre0FAlIaUUpRoFUvBaBZHQJbZtPCVKPJ1fZQoaAZoCWgPQwi7tOGwNGxJQJSGlFKUaBVLyGgWR0CW3MIZqEeydX2UKGgGaAloD0MImZ1F79TicECUhpRSlGgVTY8BaBZHQJbdfGlyimF1fZQoaAZoCWgPQwheK6G7pHRyQJSGlFKUaBVNcwFoFkdAlt3XcYZVGXV9lChoBmgJaA9DCHMR34kZbnBAlIaUUpRoFU0uAWgWR0CW3peMQ2/BdX2UKGgGaAloD0MIyNPyA9eBcECUhpRSlGgVTdABaBZHQJbfmNrCWNZ1fZQoaAZoCWgPQwgLYTWWcI1wQJSGlFKUaBVNaQFoFkdAlt+vvKEFn3V9lChoBmgJaA9DCBE4EmgwcXFAlIaUUpRoFU00AWgWR0CW4BODJ2dNdX2UKGgGaAloD0MI4EigwWYwckCUhpRSlGgVTQEBaBZHQJbg2fAbhm51fZQoaAZoCWgPQwiH+IctvWFwQJSGlFKUaBVN8wJoFkdAluEo/eLvTnV9lChoBmgJaA9DCHA/4IFBinJAlIaUUpRoFU0aAWgWR0CW4l3NcGC7dX2UKGgGaAloD0MIEjP7PIbJcUCUhpRSlGgVTYcBaBZHQJbi5tYSxqx1fZQoaAZoCWgPQwipaoKoO4BwQJSGlFKUaBVNjgFoFkdAluNAR9PUKHV9lChoBmgJaA9DCMnlP6Tf6klAlIaUUpRoFUvLaBZHQJbkhGvwEyN1fZQoaAZoCWgPQwhHA3gLpENwQJSGlFKUaBVNIQFoFkdAluTawQlKLHV9lChoBmgJaA9DCG7A54fRuHFAlIaUUpRoFU3KAWgWR0CW5QOrQw9JdX2UKGgGaAloD0MIWMudmWBccUCUhpRSlGgVTT0BaBZHQJblZrdnCfp1fZQoaAZoCWgPQwhAo3TpX31wQJSGlFKUaBVNSwFoFkdAluV/dRBNVXV9lChoBmgJaA9DCKLtmLoronBAlIaUUpRoFU0mAWgWR0CW6EpNbkfcdX2UKGgGaAloD0MIMGR1q+e2b0CUhpRSlGgVTTwBaBZHQJbo1xIatLd1fZQoaAZoCWgPQwhvgm+avsZtQJSGlFKUaBVNPwFoFkdAlunnRLK3eHV9lChoBmgJaA9DCGb1DrcDzXJAlIaUUpRoFU02AWgWR0CW6m5nUUfxdX2UKGgGaAloD0MIbTZWYp6EcECUhpRSlGgVTSoBaBZHQJbrrA0sOG11fZQoaAZoCWgPQwhUcHhBxN1xQJSGlFKUaBVNCAFoFkdAluxBE0BOpXV9lChoBmgJaA9DCOIhjJ/GtmxAlIaUUpRoFU0uAWgWR0CW7TCGetjkdX2UKGgGaAloD0MI71TAPY+hcECUhpRSlGgVTSUBaBZHQJbtyA9V3ll1fZQoaAZoCWgPQwgNHTuoBLRwQJSGlFKUaBVNdgFoFkdAlu5SsXBP9HV9lChoBmgJaA9DCBppqbwdmnFAlIaUUpRoFU23AWgWR0CW73yvs7dSdX2UKGgGaAloD0MIn1kSoCZ9b0CUhpRSlGgVTSQBaBZHQJbwHv+fh/B1fZQoaAZoCWgPQwhpOGVuvllwQJSGlFKUaBVNTAFoFkdAlvE4sAeaKHV9lChoBmgJaA9DCCPYuP7daHJAlIaUUpRoFU1jAWgWR0CW8fLi++M7dX2UKGgGaAloD0MIXhCRmnY5cUCUhpRSlGgVTREBaBZHQJby2bUgB911fZQoaAZoCWgPQwjjx5i71q9yQJSGlFKUaBVNmAFoFkdAlvTWCI1tO3V9lChoBmgJaA9DCH/7OnAOznBAlIaUUpRoFU0dAWgWR0CW9QazNUwSdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2b/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaf45a19a434a494b246f4d44048f53e79f49075def6b61a165c7a7a86ad90f3
|
3 |
+
size 84829
|
ppo-LunarLander-v2b/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:373fd9e986616a680b9fa2938db66542ce9ad8906cac38640258ead9e26cc6c2
|
3 |
+
size 43201
|
ppo-LunarLander-v2b/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2b/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3adfd4070ace3dfef1ee33095dc431c59e10633c1de456c67acd3757a4427976
|
3 |
+
size 243909
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.7656387157101, "std_reward": 19.77544206857468, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T02:26:31.720788"}
|