File size: 3,962 Bytes
f2cf981
db10f58
 
 
51d3c7d
 
db10f58
 
 
 
 
 
 
 
 
 
 
 
f2cf981
db10f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0da5c
 
 
 
 
 
 
 
 
 
db10f58
 
 
 
 
 
3d43d3b
db10f58
da0da5c
0635e22
 
 
d014fd3
0635e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
base_model:
- datatab/Yugo55-GPT-v4
- datatab/Yugo55-GPT-DPO-v1-chkp-600
library_name: transformers
tags:
- mergekit
- merge
- text-generation-inference
- transformers
- mistral
license: mit
language:
- sr
datasets:
- datatab/alpaca-cleaned-serbian-full
- datatab/ultrafeedback_binarized
- datatab/open-orca-slim-serbian
---
# Yugo60-GPT

- **Developed by:** datatab
- **License:** mit


## 🏆 Results 
> Results obtained through the Serbian LLM evaluation, released by Aleksa Gordić: [serbian-llm-eval](https://github.com/gordicaleksa/serbian-llm-eval)
> * Evaluation was conducted on a 4-bit version of the model due to hardware resource constraints.
<table>
  <tr>
    <th>MODEL</th>
    <th>ARC-E</th>
    <th>ARC-C</th>
    <th>Hellaswag</th>
    <th>BoolQ</th>
    <th>Winogrande</th>
    <th>OpenbookQA</th>
    <th>PiQA</th>
  </tr>
  <tr>
    <td><a href="https://huggingface.co/datatab/Yugo55-GPT-v4-4bit/">*Yugo55-GPT-v4-4bit</a></td>
    <td>51.41</td>
    <td>36.00</td>
    <td>57.51</td>
    <td>80.92</td>
    <td><strong>65.75</strong></td>
    <td>34.70</td>
    <td><strong>70.54</strong></td>
  </tr>
  <tr>
    <td><a href="https://huggingface.co/datatab/Yugo55A-GPT/">Yugo55A-GPT</a></td>
    <td><strong>51.52</strong></td>
    <td><strong>37.78</strong></td>
    <td><strong>57.52</strong></td>
    <td><strong>84.40</strong></td>
    <td>65.43</td>
    <td><strong>35.60</strong></td>
    <td>69.43</td>
  </tr>
  <tr>
    <td><a href="https://huggingface.co/datatab/Yugo60-GPT/">Yugo60-GPT</a></td>
    <td><strong>tbd</strong></td>
    <td><strong>tbd</strong></td>
    <td><strong>tbd</strong></td>
    <td><strong>tbd</strong></td>
    <td><strong>tbd</strong></td>
    <td><strong>tbd</strong></td>
    <td><strong>tbd</strong></td>
  </tr>
</table>

## 💻 Usage
```terminal
!pip -q install git+https://github.com/huggingface/transformers
!pip install -q datasets loralib sentencepiece
!pip -q install bitsandbytes accelerate
```

```python
from IPython.display import HTML, display

def set_css():
  display(HTML('''
  <style>
    pre {
        white-space: pre-wrap;
    }
  </style>
  '''))
get_ipython().events.register('pre_run_cell', set_css)

```

```python
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "datatab/Yugo60-GPT", torch_dtype="auto"
)

tokenizer = AutoTokenizer.from_pretrained(
    "datatab/Yugo60-GPT", torch_dtype="auto"
)


```

```python
from typing import Optional
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer


def generate(
    user_content: str, system_content: Optional[str] = ""
) -> str:
    system_content = "Ispod je uputstvo koje opisuje zadatak, upareno sa unosom koji pruža dodatni kontekst. Napišite odgovor koji na odgovarajući način kompletira zahtev."

    messages = [
        {
            "role": "system",
            "content": system_content,
        },
        {"role": "user", "content": user_content},
    ]

    tokenized_chat = tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
    ).to("cuda")

    text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    output = model.generate(
        tokenized_chat,
        streamer=text_streamer,
        max_new_tokens=2048,
        temperature=0.1,
        repetition_penalty=1.11,
        top_p=0.92,
        top_k=1000,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        do_sample=True,
    )

    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)


```

```python
generate("Nabroj mi sve planete suncevog sistemai reci mi koja je najveca planeta")
```

```python
generate("Koja je razlika između lame, vikune i alpake?")
```

```python
generate("Napišite kratku e-poruku Semu Altmanu dajući razloge za GPT-4 otvorenog koda")
```