File size: 3,729 Bytes
6ec020a
 
 
 
 
 
 
 
 
 
da42163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e2655b
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec020a
b71eefd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: mit
task_categories:
- text-classification
language:
- zh
tags:
- code
size_categories:
- 100M<n<1B
model-index:
- name: AutoModel
  results:
  - task:
      type: vqa
      name: Visual Question Answering
    dataset:
      type: synthetic-dataset
      name: Synthetic Multimodal Dataset
      split: test
    metrics:
    - type: accuracy
      value: 85
pipeline_tag: question-answering
model_index:
- name: AutoModel
  results:
  - task:
      type: vqa
      name: Visual Question Answering
    dataset:
      type: synthetdataset
      name: Synthetic Multimodal Dataset
      config: default
      split: test
      revision: main
    metrics:
    - type: accuracy
      value: 85
      name: VQA Accuracy
  - task:
      type: automatspeerecognition
      name: Automatic Speech Recognition
    dataset:
      type: synthetdataset
      name: Synthetic Multimodal Dataset
      config: default
      split: test
      revision: main
    metrics:
    - type: wer
      value: 15.3
      name: Test WER
  - task:
      type: captioning
      name: Image Captioning
    dataset:
      type: synthetdataset
      name: Synthetic Multimodal Dataset
      config: default
      split: test
      revision: main
    metrics:
    - type: bleu
      value: 27.5
      name: BL4
      model-index:
- name: Evolutionary Multi-Modal Model
  results:
  - task:
      type: vqa
      name: Visual Question Answering
    dataset:
      type: synthetic-dataset
      name: Synthetic Multimodal Dataset
      split: test
    metrics:
    - type: accuracy
      value: 85
      pipeline_tag: audio-text-to-text
---
--
2nd International Chinese Word Segmentation Bakeoff - Data Release
Release 1, 2005-11-18
--
* Introduction

This directory contains the training, test, and gold-standard data
used in the 2nd International Chinese Word Segmentation Bakeoff. Also
included is the script used to score the results submitted by the
bakeoff participants and the simple segmenter used to generate the
baseline and topline data.
--
* File List

gold/       Contains the gold standard segmentation of the test data
            along with the training data word lists.
-
scripts/    Contains the scoring script and simple segmenter.
-
testing/    Contains the unsegmented test data.
-
training/   Contains the segmented training data.
-
doc/        Contains the instructions used in the bakeoff.
--
* Encoding Issues

Files with the extension ".utf8" are encoded in UTF-8 Unicode.
-
Files with the extension ".txt" are encoded as follows:
-
as_    Big Five (CP950)
hk_    Big Five/HKSCS
msr_   EUC-CN (CP936)
pku_   EUC-CN (CP936)
-
EUC-CN is often called "GB" or "GB2312" encoding, though technically
GB2312 is a character set, not a character encoding.
-
* Scoring

The script 'score' is used to generate compare two segmentations. The
script takes three arguments:
-
1. The training set word list
2. The gold standard segmentation
3. The segmented test file

You must not mix character encodings when invoking the scoring
script. For example:
-
% perl scripts/score gold/cityu_training_words.utf8 \
    gold/cityu_test_gold.utf8 test_segmentation.utf8 > score.ut8
-
* Licensing

The corpora have been made available by the providers for the purposes
of this competition only. By downloading the training and testing
corpora, you agree that you will not use these corpora for any other
purpose than as material for this competition. Petitions to use the
data for any other purpose MUST be directed to the original providers
of the data. Neither SIGHAN nor the ACL will assume any liability for
a participant's misuse of the data.
-
* Questions?

Questions or comments about these data can be sent to Tom Emerson,
[email protected].
-