import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import CountVectorizer import torch import torch.nn as nn import torch.optim as optim from sklearn.metrics import accuracy_score, classification_report # 1. Load data data = pd.read_csv('data.csv') # Replace 'data.csv' with your dataset print("Columns in the dataset:", data.columns) # Check column names # 2. Preprocess data X = data['text'] # Assuming your text column is named 'text' y = data['label'] # Assuming your label column is named 'label' # Encode labels label_encoder = LabelEncoder() y_encoded = label_encoder.fit_transform(y) # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42) # Convert text to numerical features vectorizer = CountVectorizer() X_train_vectorized = vectorizer.fit_transform(X_train) X_test_vectorized = vectorizer.transform(X_test) # 3. Define the neural network model class SentimentModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(SentimentModel, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x # Initialize model input_size = X_train_vectorized.shape[1] hidden_size = 512 output_size = len(label_encoder.classes_) model = SentimentModel(input_size, hidden_size, output_size) # 4. Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 5. Train the model num_epochs = 1000 for epoch in range(num_epochs): model.train() optimizer.zero_grad() outputs = model(torch.FloatTensor(X_train_vectorized.toarray())) loss = criterion(outputs, torch.LongTensor(y_train)) loss.backward() optimizer.step() print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') # 6. Evaluate the model model.eval() with torch.no_grad(): test_outputs = model(torch.FloatTensor(X_test_vectorized.toarray())) _, predicted = torch.max(test_outputs, 1) # Calculate accuracy accuracy = accuracy_score(y_test, predicted.numpy()) print(f'Accuracy: {accuracy:.4f}') # Detailed classification report print(classification_report(y_test, predicted.numpy(), target_names=label_encoder.classes_)) # 7. Test the model with new sample inputs def predict_sentiment(text): # Vectorize the input text text_vectorized = vectorizer.transform([text]) with torch.no_grad(): output = model(torch.FloatTensor(text_vectorized.toarray())) _, predicted = torch.max(output, 1) return label_encoder.inverse_transform(predicted.numpy())[0] # Test the model with new sentences new_samples = [ "It is very good", "Bad", "Good", "loving you", "Loving you", "love you", "Love you", "Very bad", "I love you", "Fuck", "fuck", "bad store", "i dont love this", "not like this" ] for sample in new_samples: sentiment = predict_sentiment(sample) print(f'Text: "{sample}" -> Predicted Sentiment: {sentiment}')