import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader, random_split import numpy as np from tqdm import tqdm # Configuration CONFIG = { "FILE_PATH": 'dataset.txt', "SEQ_LENGTH": 32, # Increased context window "BATCH_SIZE": 512, # Increased batch size "EPOCHS": 20, "EMBEDDING_DIM": 64, "HIDDEN_DIM": 64, "NUM_LAYERS": 1, # Multi-layer LSTM "DROPOUT": 0.1, "LEARNING_RATE": 0.01, "CLIP_GRAD": 1.0, # Gradient clipping "LR_GAMMA": 0.95, # Learning rate decay "VAL_SPLIT": 0.1, # Validation split "EARLY_STOP_PATIENCE": 3, # Early stopping patience "MODEL_SAVE_PATH": "char_lm_model.pth", "TEMPERATURE": 0.7, "TOP_K": 5, "TOP_P": 0.95 } # Read and process text with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f: text = f.read() # Vocabulary setup chars = sorted(list(set(text))) vocab_size = len(chars) char_to_idx = {ch: i for i, ch in enumerate(chars)} idx_to_char = {i: ch for i, ch in enumerate(chars)} # Encode text encoded_text = np.array([char_to_idx[ch] for ch in text]) # Dataset class with train-val split class TextDataset(Dataset): def __init__(self, data, seq_length): self.data = data self.seq_length = seq_length def __len__(self): return len(self.data) - self.seq_length - 1 def __getitem__(self, idx): x = self.data[idx:idx+self.seq_length] y = self.data[idx+1:idx+self.seq_length+1] return torch.from_numpy(x).long(), torch.from_numpy(y).long() dataset = TextDataset(encoded_text, CONFIG["SEQ_LENGTH"]) val_size = int(len(dataset) * CONFIG["VAL_SPLIT"]) train_size = len(dataset) - val_size train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) train_loader = DataLoader(train_dataset, batch_size=CONFIG["BATCH_SIZE"], shuffle=True) val_loader = DataLoader(val_dataset, batch_size=CONFIG["BATCH_SIZE"]) # Advanced Model architecture with LSTM and dropout class CharLM(nn.Module): def __init__(self): super(CharLM, self).__init__() self.embedding = nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"]) self.lstm = nn.LSTM( CONFIG["EMBEDDING_DIM"], CONFIG["HIDDEN_DIM"], num_layers=CONFIG["NUM_LAYERS"], dropout=CONFIG["DROPOUT"] if CONFIG["NUM_LAYERS"] > 1 else 0, batch_first=True ) self.dropout = nn.Dropout(CONFIG["DROPOUT"]) self.fc = nn.Linear(CONFIG["HIDDEN_DIM"], vocab_size) self.init_weights() def init_weights(self): # Initialize weights for better convergence nn.init.xavier_uniform_(self.embedding.weight) for name, param in self.lstm.named_parameters(): if 'weight_ih' in name: nn.init.xavier_uniform_(param.data) elif 'weight_hh' in name: nn.init.orthogonal_(param.data) elif 'bias' in name: param.data.fill_(0) def forward(self, x, hidden=None): x = self.embedding(x) out, hidden = self.lstm(x, hidden) out = self.dropout(out) out = self.fc(out) return out, hidden model = CharLM() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=CONFIG["LEARNING_RATE"]) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=CONFIG["LR_GAMMA"]) # Training loop with validation and early stopping best_val_loss = float('inf') patience_counter = 0 for epoch in range(CONFIG["EPOCHS"]): model.train() train_loss = 0 progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{CONFIG["EPOCHS"]}') for inputs, targets in progress_bar: optimizer.zero_grad() outputs, _ = model(inputs) loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1)) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), CONFIG["CLIP_GRAD"]) optimizer.step() train_loss += loss.item() progress_bar.set_postfix({'loss': loss.item()}) # Validation phase model.eval() val_loss = 0 with torch.no_grad(): for inputs, targets in val_loader: outputs, _ = model(inputs) loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1)) val_loss += loss.item() avg_train_loss = train_loss / len(train_loader) avg_val_loss = val_loss / len(val_loader) print(f'Epoch {epoch+1} | Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}') # Early stopping and checkpointing if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss torch.save(model.state_dict(), CONFIG["MODEL_SAVE_PATH"]) patience_counter = 0 else: patience_counter += 1 if patience_counter >= CONFIG["EARLY_STOP_PATIENCE"]: print("Early stopping triggered") break scheduler.step() print(f'Best model saved to {CONFIG["MODEL_SAVE_PATH"]} with validation loss: {best_val_loss:.4f}') # Advanced Text Generation with multiple sampling methods def generate_text(model, start_str, length=200, temperature=CONFIG["TEMPERATURE"], top_k=CONFIG["TOP_K"], top_p=CONFIG["TOP_P"]): """ Generate text with temperature scaling, top-k, and nucleus (top-p) sampling """ model.eval() chars = list(start_str) input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0) hidden = None with torch.no_grad(): for _ in tqdm(range(length), desc="Generating text"): outputs, hidden = model(input_seq, hidden) logits = outputs[0, -1] / temperature # Apply top-k filtering if top_k > 0: top_vals, top_idx = torch.topk(logits, top_k) logits[logits < top_vals[-1]] = -float('Inf') # Apply nucleus (top-p) filtering if top_p > 0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = -float('Inf') probs = torch.softmax(logits, dim=-1) next_char = torch.multinomial(probs, num_samples=1).item() chars.append(idx_to_char[next_char]) input_seq = torch.tensor([[next_char]]) return ''.join(chars) # Generation examples with different parameters print("\nConservative sampling (temperature=0.5):") print(generate_text(model, "The ", temperature=0.5)) print("\nCreative sampling (temperature=1.2, top_p=0.9):") print(generate_text(model, "Once ", temperature=1.2, top_p=0.9)) print("\nTop-k sampling (k=5):") print(generate_text(model, "In ", top_k=5)) print("\nCombined sampling (temp=0.7, top_k=3, top_p=0.9):") print(generate_text(model, "Artificial is ", temperature=0.7, top_k=3, top_p=0.9))