#!/usr/bin/env python # Copyright (c) Microsoft Corporation. All rights reserved. import torch import torch_directml from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor, Lambda, Compose, transforms import torchvision.models as models import collections import matplotlib.pyplot as plt import argparse import time import os import pathlib import test_classification import dataloader_classification from test_classification import get_model import torch.autograd.profiler as profiler def select_device(device=''): if device.lower() == 'cuda': if not torch.cuda.is_available(): print ("torch.cuda not available") return torch.device('cpu') else: return torch.device('cuda:0') if device.lower() == 'dml': return torch_directml.device(torch_directml.default_device()) else: return torch.device('cpu') def train(dataloader, model, device, loss, learning_rate, momentum, weight_decay, trace, model_str, ci_train): size = len(dataloader.dataset) # Define optimizer optimizer = torch.optim.SGD( model.parameters(), lr=learning_rate, momentum=momentum, weight_decay=weight_decay) optimize_after_batches = 1 start = time.time() for batch, (X, y) in enumerate(dataloader): X = X.to(device) y = y.to(device) if (trace): with profiler.profile(record_shapes=True, with_stack=True, profile_memory=True) as prof: with profiler.record_function("model_inference"): # Compute loss and perform backpropagation if (model_str == 'inception_v3'): pred, _ = model(X) elif (model_str == 'googlenet'): pred, _, _ = model(X) else: pred = model(X) batch_loss = loss(pred, y) batch_loss.backward() if batch % optimize_after_batches == 0: optimizer.step() optimizer.zero_grad() print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000)) break else: # Compute loss and perform backpropagation if (model_str == 'inception_v3'): outputs, aux_outputs = model(X) loss1 = loss(outputs, y) loss2 = loss(aux_outputs, y) batch_loss = loss1 + 0.4*loss2 elif (model_str == 'googlenet'): outputs, aux_outputs_1, aux_outputs_2 = model(X) loss1 = loss(outputs, y) loss2 = loss(aux_outputs_1, y) loss3 = loss(aux_outputs_2, y) batch_loss = loss1 + 0.3*loss2 + 0.3*loss3 else: pred = model(X) batch_loss = loss(model(X), y) batch_loss.backward() if batch % optimize_after_batches == 0: optimizer.step() optimizer.zero_grad() if (batch+1) % 100 == 0: batch_loss_cpu, current = batch_loss.to('cpu'), (batch+1) * len(X) print(f"loss: {batch_loss_cpu.item():>7f} [{current:>5d}/{size:>5d}] in {time.time() - start:>5f}s") start = time.time() if ci_train: print(f"train [{len(X):>5d}/{size:>5d}] in {time.time() - start:>5f}s") break def main(path, batch_size, epochs, learning_rate, momentum, weight_decay, device, model_str, save_model, trace, ci_train=False): if trace: if model_str == 'inception_v3': batch_size = 3 else: batch_size = 1 epochs = 1 if trace or ci_train else epochs input_size = 299 if model_str == 'inception_v3' else 224 model = get_model(model_str, device) # Load the dataset training_dataloader = dataloader_classification.create_training_dataloader(path, batch_size, input_size) testing_dataloader = dataloader_classification.create_testing_dataloader(path, batch_size, input_size) # Load the model on the device start = time.time() print('Finished moving {} to device: {} in {}s.'.format(model_str, device, time.time() - start)) cross_entropy_loss = nn.CrossEntropyLoss().to(device) highest_accuracy = 0 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") # Train train(training_dataloader, model, device, cross_entropy_loss, learning_rate, momentum, weight_decay, trace, model_str, ci_train) if not trace and not ci_train: # Test highest_accuracy = test_classification.eval(testing_dataloader, model_str, model, device, cross_entropy_loss, highest_accuracy, save_model, False) print("Done! with highest_accuracy: ", highest_accuracy) if __name__ == "__main__": parser = argparse.ArgumentParser(__doc__) parser.add_argument("--path", type=str, default="cifar-10-python", help="Path to cifar dataset.") parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='Batch size to train with.') parser.add_argument('--epochs', type=int, default=50, metavar='N', help='The number of epochs to train for.') parser.add_argument('--learning_rate', type=float, default=0.001, metavar='LR', help='The learning rate.') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='The percentage of past parameters to store.') parser.add_argument('--weight_decay', default=0.0001, type=float, help='The parameter to decay weights.') parser.add_argument('--device', type=str, default='dml', help='The device to use for training.') parser.add_argument('--model', type=str, default='', help='The model to use.') parser.add_argument('--save_model', action='store_true', help='save model state_dict to file') parser.add_argument('--trace', type=bool, default=False, help='Trace performance.') args = parser.parse_args() print (args) device = select_device(args.device) main(args.path, args.batch_size, args.epochs, args.learning_rate, args.momentum, args.weight_decay, device, args.model, args.save_model, args.trace)