import torch import torch_directml from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor, Lambda, Compose, transforms import torchvision.models as models import collections import matplotlib.pyplot as plt import argparse import time import os import pathlib def get_pytorch_root(path): return pathlib.Path(__file__).parent.parent.resolve() def get_pytorch_data(): return str(os.path.join(pathlib.Path(__file__).parent.parent.resolve(), 'data')) def get_data_path(path): if (os.path.isabs(path)): return path else: return str(os.path.join(get_pytorch_data(), path)) def print_dataloader(dataloader, mode): for X, y in dataloader: print("\t{} data X [N, C, H, W]: \n\t\tshape={}, \n\t\tdtype={}".format(mode, X.shape, X.dtype)) print("\t{} data Y: \n\t\tshape={}, \n\t\tdtype={}".format(mode, y.shape, y.dtype)) break def create_training_data_transform(input_size): return transforms.Compose([transforms.RandomResizedCrop(input_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) def create_training_dataloader(path, batch_size, input_size=224): path = get_data_path(path) print('Loading the training dataset from: {}'.format(path)) train_transform = create_training_data_transform(input_size) training_set = datasets.CIFAR10(root=path, train=True, download=False, transform=train_transform) data_loader = DataLoader(dataset=training_set, batch_size=batch_size, shuffle=True, num_workers=0) print_dataloader(data_loader, 'Train') return data_loader def create_testing_data_transform(input_size): return transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(input_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def create_testing_dataloader(path, batch_size, input_size=224): path = get_data_path(path) print('Loading the testing dataset from: {}'.format(path)) test_transform = create_testing_data_transform(input_size) test_set = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform) data_loader = DataLoader(dataset=test_set, batch_size=batch_size, shuffle=False, num_workers=0) print_dataloader(data_loader, 'Test') return data_loader