import torch import torch.nn as nn import torch.optim as optim # 1. Prepare the Dataset def prepare_dataset(filepath, seq_length): """ Prepares the dataset for training from a text file. Args: filepath (str): Path to the text file (e.g., 'dataset.txt'). seq_length (int): The length of input sequences. Returns: tuple: vocab (set), char_to_index (dict), index_to_char (dict), input_sequences (list), target_sequences (list) """ try: with open(filepath, 'r', encoding='utf-8') as file: text = file.read() except FileNotFoundError: print(f"Error: File '{filepath}' not found. Make sure the file exists in the correct directory.") return None, None, None, None, None vocab = sorted(list(set(text))) char_to_index = {char: index for index, char in enumerate(vocab)} index_to_char = {index: char for index, char in enumerate(vocab)} input_sequences = [] target_sequences = [] for i in range(0, len(text) - seq_length): input_seq = text[i:i + seq_length] target_seq = text[i + seq_length] input_sequences.append([char_to_index[char] for char in input_seq]) target_sequences.append(char_to_index[target_seq]) return vocab, char_to_index, index_to_char, input_sequences, target_sequences # 2. Define the Language Model (Simple RNN) class SimpleRNNLM(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers): super(SimpleRNNLM, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, num_layers, batch_first=True) self.fc = nn.Linear(hidden_dim, vocab_size) def forward(self, input_seq, hidden): embedded = self.embedding(input_seq) output, hidden = self.rnn(embedded, hidden) output = self.fc(output[:, -1, :]) return output, hidden def init_hidden(self, batch_size, num_layers, hidden_dim): return torch.zeros(num_layers, batch_size, hidden_dim) # Example Usage dataset_filepath = 'dataset.txt' # Path to your dataset text file seq_length = 64 vocab, char_to_index, index_to_char, input_seqs, target_seqs = prepare_dataset(dataset_filepath, seq_length) if vocab is None: exit() print(f"Vocabulary Size: {len(vocab)}") print(f"Number of Input Sequences: {len(input_seqs)}") # 3. Instantiate Model, Loss Function, and Optimizer vocab_size = len(vocab) embedding_dim = 32 hidden_dim = 64 num_layers = 1 learning_rate = 0.01 num_epochs = 10 model = SimpleRNNLM(vocab_size, embedding_dim, hidden_dim, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) device = torch.device("cpu") model.to(device) criterion.to(device) # 4. Training Loop batch_size = 256 for epoch in range(num_epochs): model.train() total_loss = 0 for i in range(0, len(input_seqs), batch_size): input_batch = input_seqs[i:i+batch_size] target_batch = target_seqs[i:i+batch_size] input_batch_tensor = torch.LongTensor(input_batch).to(device) target_batch_tensor = torch.LongTensor(target_batch).to(device) hidden = model.init_hidden(len(input_batch), num_layers, hidden_dim).to(device) optimizer.zero_grad() output, hidden = model(input_batch_tensor, hidden) loss = criterion(output, target_batch_tensor) loss.backward() optimizer.step() total_loss += loss.item() average_loss = total_loss / (len(input_seqs) // batch_size + (len(input_seqs) % batch_size != 0)) print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {average_loss:.4f}") # 5. Text Generation def generate_text(model, start_text, predict_len, char_to_index, index_to_char, vocab, device): model.eval() generated_text = start_text input_sequence = [char_to_index[char] for char in start_text] input_tensor = torch.LongTensor([input_sequence]).to(device) hidden = model.init_hidden(1, num_layers, hidden_dim).to(device) with torch.no_grad(): for _ in range(predict_len): output, hidden = model(input_tensor, hidden) probabilities = torch.softmax(output, dim=1) predicted_index = torch.multinomial(probabilities, 1).item() predicted_char = index_to_char[predicted_index] generated_text += predicted_char input_sequence = input_sequence[1:] + [predicted_index] input_tensor = torch.LongTensor([input_sequence]).to(device) return generated_text # Example Generation start_text = "The " predict_length = 500 generated_output = generate_text(model, start_text, predict_length, char_to_index, index_to_char, vocab, device) print("\nGenerated Text:") print(generated_output)