#!/usr/bin/env python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Define the directory where your fine-tuned model is saved. model_dir = "./gpt2-finetuned" # Load the tokenizer and model from the saved directory. tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForCausalLM.from_pretrained(model_dir) # If you are using GPU and it's available, move the model to GPU. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) print("Chat with the model! Type 'exit' or 'quit' to end the conversation.") while True: # Get user input. user_input = input("You: ") if user_input.lower() in ["exit", "quit"]: print("Exiting chat.") break # Encode the input text and generate an attention mask. inputs = tokenizer(user_input, return_tensors="pt", padding=True, truncation=True) input_ids = inputs["input_ids"].to(device) attention_mask = inputs["attention_mask"].to(device) # Explicitly set the attention mask # Generate a response. You can tweak the generation parameters as needed. output_ids = model.generate( input_ids, attention_mask=attention_mask, # Pass the attention mask here max_length=100, # Maximum length of the generated response. do_sample=True, # Use sampling; set to False for greedy decoding. top_p=0.95, # Top-p (nucleus) sampling. top_k=50, # Top-k sampling. pad_token_id=tokenizer.eos_token_id # Avoid warnings if no pad token is defined. ) # Decode the generated tokens to a string. response = tokenizer.decode(output_ids[0], skip_special_tokens=True) print("Bot:", response)