import torch import numpy as np # Configuration (MUST match training configuration) CONFIG = { "FILE_PATH": 'dataset.txt', "SEQ_LENGTH": 32, "EMBEDDING_DIM": 64, "HIDDEN_DIM": 64, "NUM_LAYERS": 1, "DROPOUT": 0.2, "MODEL_SAVE_PATH": "char_lm_advanced.pth", "TEMPERATURE": 0.7, "TOP_K": 5, "TOP_P": 0.95 } # Load vocabulary with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f: text = f.read() chars = sorted(list(set(text))) char_to_idx = {ch: i for i, ch in enumerate(chars)} idx_to_char = {i: ch for i, ch in enumerate(chars)} vocab_size = len(chars) # Model definition (must match training architecture) class CharLM(torch.nn.Module): def __init__(self): super(CharLM, self).__init__() self.embedding = torch.nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"]) self.lstm = torch.nn.LSTM( CONFIG["EMBEDDING_DIM"], CONFIG["HIDDEN_DIM"], num_layers=CONFIG["NUM_LAYERS"], dropout=CONFIG["DROPOUT"] if CONFIG["NUM_LAYERS"] > 1 else 0, batch_first=True ) self.dropout = torch.nn.Dropout(CONFIG["DROPOUT"]) self.fc = torch.nn.Linear(CONFIG["HIDDEN_DIM"], vocab_size) def forward(self, x, hidden=None): x = self.embedding(x) out, hidden = self.lstm(x, hidden) out = self.dropout(out) out = self.fc(out) return out, hidden # Load trained model model = CharLM() model.load_state_dict(torch.load(CONFIG["MODEL_SAVE_PATH"])) model.eval() def generate_text(model, start_str, length=200, temperature=CONFIG["TEMPERATURE"], top_k=CONFIG["TOP_K"], top_p=CONFIG["TOP_P"]): """ Generate text with temperature scaling, top-k, and nucleus (top-p) sampling """ model.eval() chars = list(start_str) input_seq = torch.tensor([char_to_idx[ch] for ch in chars]).unsqueeze(0) hidden = None with torch.no_grad(): for _ in range(length): outputs, hidden = model(input_seq, hidden) logits = outputs[0, -1] / temperature # Apply top-k filtering if top_k > 0: top_vals, top_idx = torch.topk(logits, top_k) logits[logits < top_vals[-1]] = -float('Inf') # Apply nucleus (top-p) filtering if top_p > 0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = -float('Inf') probs = torch.softmax(logits, dim=-1) next_char = torch.multinomial(probs, num_samples=1).item() chars.append(idx_to_char[next_char]) input_seq = torch.tensor([[next_char]]) return ''.join(chars) # Interactive loop while True: try: print("\n" + "="*50) prompt = input("Enter your starting text (or 'exit' to quit):\n> ") if prompt.lower() == 'exit': print("Goodbye!") break # Filter invalid characters valid_prompt = [c for c in prompt if c in char_to_idx] if not valid_prompt: print("Please use characters from the training data.") continue # Get generation parameters length = int(input("Output length (50-500 recommended): ")) or 200 temp = float(input(f"Temperature [{CONFIG['TEMPERATURE']}]: ") or CONFIG["TEMPERATURE"]) top_k = int(input(f"Top-K [{CONFIG['TOP_K']}]: ") or CONFIG["TOP_K"]) top_p = float(input(f"Top-P [{CONFIG['TOP_P']}]: ") or CONFIG["TOP_P"]) # Generate and display print("\nGenerating...") generated = generate_text( model, ''.join(valid_prompt), length=length, temperature=temp, top_k=top_k, top_p=top_p ) print("\nGenerated Text:") print(generated) print("="*50) except ValueError: print("Invalid input! Please enter valid numbers for parameters.") except KeyboardInterrupt: print("\nExiting...") break