import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader, random_split import numpy as np from tqdm import tqdm # Configuration CONFIG = { "FILE_PATH": 'dataset.txt', "SEQ_LENGTH": 32, # Increased sequence length "BATCH_SIZE": 8, # Increased batch size "EPOCHS": 1, "EMBEDDING_DIM": 64, # Deeper embedding layer "HIDDEN_DIM": 64, # Larger hidden dimension "NUM_LAYERS": 1, # More LSTM layers "BIDIRECTIONAL": False, # Optional bidirectionality "DROPOUT": 0.3, "LEARNING_RATE": 0.01, "CLIP_GRAD": 1.0, # Gradient clipping "LR_GAMMA": 0.9, # Learning rate decay "VAL_SPLIT": 0.1, # Validation split "EARLY_STOP_PATIENCE": 3, # Early stopping patience "MODEL_SAVE_PATH": "char_lm_advanced.pth", "TEMPERATURE": 0.7, "TOP_K": 10, "TOP_P": 0.95 } # Check for GPU device = torch.device("cpu") # Read and process text with open(CONFIG["FILE_PATH"], 'r', encoding='utf-8') as f: text = f.read() chars = sorted(set(text)) vocab_size = len(chars) char_to_idx = {ch: i for i, ch in enumerate(chars)} idx_to_char = {i: ch for i, ch in enumerate(chars)} encoded_text = np.array([char_to_idx[ch] for ch in text]) # Dataset Class class TextDataset(Dataset): def __init__(self, data, seq_length): self.data = data self.seq_length = seq_length def __len__(self): return len(self.data) - self.seq_length - 1 def __getitem__(self, idx): x = self.data[idx:idx+self.seq_length] y = self.data[idx+1:idx+self.seq_length+1] return torch.from_numpy(x).long(), torch.from_numpy(y).long() # Splitting dataset full_dataset = TextDataset(encoded_text, CONFIG["SEQ_LENGTH"]) val_size = int(len(full_dataset) * CONFIG["VAL_SPLIT"]) train_size = len(full_dataset) - val_size train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size]) train_loader = DataLoader(train_dataset, batch_size=CONFIG["BATCH_SIZE"], shuffle=True) val_loader = DataLoader(val_dataset, batch_size=CONFIG["BATCH_SIZE"]) # Advanced LSTM Model class CharLM(nn.Module): def __init__(self): super(CharLM, self).__init__() self.embedding = nn.Embedding(vocab_size, CONFIG["EMBEDDING_DIM"]) self.lstm = nn.LSTM( CONFIG["EMBEDDING_DIM"], CONFIG["HIDDEN_DIM"], CONFIG["NUM_LAYERS"], dropout=CONFIG["DROPOUT"], bidirectional=CONFIG["BIDIRECTIONAL"], batch_first=True ) self.layer_norm = nn.LayerNorm(CONFIG["HIDDEN_DIM"]) self.fc = nn.Linear(CONFIG["HIDDEN_DIM"], vocab_size) self.dropout = nn.Dropout(CONFIG["DROPOUT"]) self.init_weights() def init_weights(self): nn.init.xavier_uniform_(self.embedding.weight) for name, param in self.lstm.named_parameters(): if 'weight' in name: nn.init.xavier_uniform_(param) elif 'bias' in name: param.data.fill_(0) def forward(self, x, hidden=None): x = self.embedding(x) out, hidden = self.lstm(x, hidden) out = self.layer_norm(out) out = self.dropout(out) out = self.fc(out) return out, hidden model = CharLM().to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.AdamW(model.parameters(), lr=CONFIG["LEARNING_RATE"]) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=CONFIG["LR_GAMMA"]) scaler = torch.cuda.amp.GradScaler() # Training with Mixed Precision & Early Stopping best_val_loss = float('inf') patience_counter = 0 for epoch in range(CONFIG["EPOCHS"]): model.train() train_loss = 0 progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{CONFIG["EPOCHS"]}') for inputs, targets in progress_bar: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() with torch.cuda.amp.autocast(): outputs, _ = model(inputs) loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1)) scaler.scale(loss).backward() scaler.unscale_(optimizer) nn.utils.clip_grad_norm_(model.parameters(), CONFIG["CLIP_GRAD"]) scaler.step(optimizer) scaler.update() train_loss += loss.item() progress_bar.set_postfix({'loss': loss.item()}) # Validation model.eval() val_loss = 0 with torch.no_grad(): for inputs, targets in val_loader: inputs, targets = inputs.to(device), targets.to(device) outputs, _ = model(inputs) loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1)) val_loss += loss.item() avg_train_loss = train_loss / len(train_loader) avg_val_loss = val_loss / len(val_loader) print(f'Epoch {epoch+1} | Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}') if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss torch.save(model.state_dict(), CONFIG["MODEL_SAVE_PATH"]) patience_counter = 0 else: patience_counter += 1 if patience_counter >= CONFIG["EARLY_STOP_PATIENCE"]: print("Early stopping triggered") break scheduler.step() print(f'Model saved to {CONFIG["MODEL_SAVE_PATH"]} with best val loss: {best_val_loss:.4f}')