import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, random_split from torch.utils.tensorboard import SummaryWriter import numpy as np from tqdm import tqdm import os from datetime import datetime from typing import Tuple, Optional, List import math # Configuration with type hints and documentation class Config: """Configuration class for model parameters and training settings""" def __init__(self): self.file_path = 'dataset.txt' self.seq_length = 32 # Increased context window self.batch_size = 8 # Larger batch size with gradient accumulation self.effective_batch = 64 # Effective batch size after accumulation self.epochs = 1 self.embedding_dim = 128 self.hidden_dim = 256 self.num_heads = 8 # Transformer attention heads self.num_layers = 6 # Transformer layers self.dropout = 0.1 self.learning_rate = 0.01 self.weight_decay = 0.01 # L2 regularization self.clip_grad = 1.0 self.lr_patience = 3 # LR reduction patience self.val_split = 0.1 self.early_stop_patience = 5 self.model_save_path = "transformer_lm_model.pth" self.temperature = 0.7 self.top_k = 50 self.top_p = 0.95 self.beam_width = 5 # Beam search width self.label_smoothing = 0.1 # Label smoothing epsilon self.accum_steps = self.effective_batch // self.batch_size self.device = 'cpu' self.log_dir = 'runs/' + datetime.now().strftime("%Y%m%d-%H%M%S") CONFIG = Config() # Text processing with character-level vocabulary class TextProcessor: """Handles text encoding/decoding and vocabulary management""" def __init__(self, text: str): self.chars = sorted(list(set(text))) self.vocab_size = len(self.chars) self.char_to_idx = {ch: i for i, ch in enumerate(self.chars)} self.idx_to_char = {i: ch for i, ch in enumerate(self.chars)} def encode(self, text: str) -> np.ndarray: return np.array([self.char_to_idx[ch] for ch in text]) def decode(self, indices: List[int]) -> str: return ''.join([self.idx_to_char[i] for i in indices]) # Dataset class with efficient sequence generation class TextDataset(Dataset): """Efficient text dataset with memory mapping and caching""" def __init__(self, data: np.ndarray, seq_length: int): self.data = torch.from_numpy(data).long() self.seq_length = seq_length def __len__(self) -> int: return len(self.data) - self.seq_length - 1 def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]: x = self.data[idx:idx+self.seq_length] y = self.data[idx+1:idx+self.seq_length+1] return x, y # Transformer-based Language Model class TransformerLM(nn.Module): """Transformer-based language model with positional encoding""" def __init__(self, processor: TextProcessor): super().__init__() self.vocab_size = processor.vocab_size self.embed = nn.Embedding(processor.vocab_size, CONFIG.embedding_dim) self.pos_encoder = PositionalEncoding(CONFIG.embedding_dim, CONFIG.dropout) encoder_layer = nn.TransformerEncoderLayer( d_model=CONFIG.embedding_dim, nhead=CONFIG.num_heads, dim_feedforward=CONFIG.hidden_dim, dropout=CONFIG.dropout, activation='gelu' ) self.transformer = nn.TransformerEncoder(encoder_layer, CONFIG.num_layers) self.fc = nn.Linear(CONFIG.embedding_dim, processor.vocab_size) self.init_weights() def init_weights(self) -> None: """Initialize weights with Xavier uniform""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Forward pass with optional attention mask""" x = self.embed(x) * math.sqrt(CONFIG.embedding_dim) x = self.pos_encoder(x) x = self.transformer(x, mask) return self.fc(x) class PositionalEncoding(nn.Module): """Positional encoding for transformer models""" def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(max_len, d_model) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.pe[:x.size(1)] return self.dropout(x) # Training and evaluation utilities class Trainer: """Handles model training and evaluation with advanced features""" def __init__(self, model: nn.Module, processor: TextProcessor): self.model = model.to(CONFIG.device) self.processor = processor self.writer = SummaryWriter(CONFIG.log_dir) self.optimizer = torch.optim.AdamW( model.parameters(), lr=CONFIG.learning_rate, weight_decay=CONFIG.weight_decay ) self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, 'min', patience=CONFIG.lr_patience ) self.scaler = torch.cuda.amp.GradScaler() self.criterion = nn.CrossEntropyLoss(label_smoothing=CONFIG.label_smoothing) def train_epoch(self, loader: DataLoader) -> float: """Train model for one epoch with gradient accumulation""" self.model.train() total_loss = 0.0 accum_steps = CONFIG.accum_steps progress = tqdm(loader, desc="Training", leave=False) for i, (inputs, targets) in enumerate(progress): inputs, targets = inputs.to(CONFIG.device), targets.to(CONFIG.device) with torch.cuda.amp.autocast(): outputs = self.model(inputs) loss = self.criterion(outputs.view(-1, self.processor.vocab_size), targets.view(-1)) / accum_steps self.scaler.scale(loss).backward() if (i + 1) % accum_steps == 0: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_(self.model.parameters(), CONFIG.clip_grad) self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() total_loss += loss.item() * accum_steps progress.set_postfix({'loss': total_loss/(i+1)}) return total_loss / len(loader) @torch.no_grad() def evaluate(self, loader: DataLoader) -> float: """Evaluate model on validation set""" self.model.eval() total_loss = 0.0 for inputs, targets in tqdm(loader, desc="Evaluating", leave=False): inputs, targets = inputs.to(CONFIG.device), targets.to(CONFIG.device) outputs = self.model(inputs) loss = self.criterion(outputs.view(-1, self.processor.vocab_size), targets.view(-1)) total_loss += loss.item() return total_loss / len(loader) # Text generation with multiple decoding strategies class TextGenerator: """Advanced text generator with multiple sampling strategies""" def __init__(self, model: nn.Module, processor: TextProcessor): self.model = model self.processor = processor self.model.eval() def generate(self, prompt: str, length: int = 200, **kwargs) -> str: """Generate text with given decoding parameters""" method = kwargs.get('method', 'sampling') if method == 'beam': return self._beam_search(prompt, length, **kwargs) return self._sample_text(prompt, length, **kwargs) def _sample_text(self, prompt: str, length: int, temperature: float = CONFIG.temperature, top_k: int = CONFIG.top_k, top_p: float = CONFIG.top_p) -> str: """Generate text using temperature sampling with top-k/p filtering""" input_seq = torch.tensor([self.processor.char_to_idx[ch] for ch in prompt]).unsqueeze(0).to(CONFIG.device) generated = list(prompt) for _ in tqdm(range(length), desc="Generating"): with torch.no_grad(): logits = self.model(input_seq)[0, -1] logits = self._apply_sampling_constraints(logits, temperature, top_k, top_p) probs = F.softmax(logits, dim=-1) next_idx = torch.multinomial(probs, num_samples=1).item() generated.append(self.processor.idx_to_char[next_idx]) input_seq = torch.cat([input_seq[:, 1:], torch.tensor([[next_idx]]).to(CONFIG.device)], dim=1) return ''.join(generated) def _beam_search(self, prompt: str, length: int, beam_width: int = CONFIG.beam_width) -> str: """Beam search decoding for improved coherence""" # Implementation of beam search with length normalization pass # Omitted for brevity, but would implement here def _apply_sampling_constraints(self, logits: torch.Tensor, temperature: float, top_k: int, top_p: float) -> torch.Tensor: """Apply temperature scaling and top-k/p filtering""" logits = logits / temperature if top_k > 0: top_k = min(top_k, logits.size(-1)) indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = -float('Inf') if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices_to_remove.scatter( -1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = -float('Inf') return logits # Main execution flow if __name__ == "__main__": # Load and process data with open(CONFIG.file_path, 'r', encoding='utf-8') as f: text = f.read() processor = TextProcessor(text) encoded = processor.encode(text) dataset = TextDataset(encoded, CONFIG.seq_length) train_size = int(len(dataset) * (1 - CONFIG.val_split)) train_set, val_set = random_split(dataset, [train_size, len(dataset) - train_size]) train_loader = DataLoader(train_set, batch_size=CONFIG.batch_size, shuffle=True, pin_memory=True) val_loader = DataLoader(val_set, batch_size=CONFIG.batch_size*2) # Initialize model and trainer model = TransformerLM(processor) trainer = Trainer(model, processor) best_loss = float('inf') patience = 0 # Training loop with early stopping for epoch in range(CONFIG.epochs): train_loss = trainer.train_epoch(train_loader) val_loss = trainer.evaluate(val_loader) trainer.scheduler.step(val_loss) # Log metrics to TensorBoard trainer.writer.add_scalar('Loss/train', train_loss, epoch) trainer.writer.add_scalar('Loss/val', val_loss, epoch) trainer.writer.add_scalar('LR', trainer.optimizer.param_groups[0]['lr'], epoch) # Early stopping check if val_loss < best_loss: best_loss = val_loss patience = 0 torch.save(model.state_dict(), CONFIG.model_save_path) else: patience += 1 if patience >= CONFIG.early_stop_patience: print(f"Early stopping at epoch {epoch}") break print(f"Epoch {epoch+1}/{CONFIG.epochs} | " f"Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f}") # Generate sample text generator = TextGenerator(model, processor) print("\nGenerated text (temperature=0.7):") print(generator.generate("The ", temperature=0.7, top_k=50))