import cv2 import numpy as np import time from sklearn.neighbors import KNeighborsClassifier from collections import defaultdict, deque back_sub = cv2.createBackgroundSubtractorKNN(history=500, dist2Threshold=400, detectShadows=True) cap = cv2.VideoCapture(0) # ذخیره مسیر اشیاء object_traces = defaultdict(lambda: deque(maxlen=30)) # آخرین ۳۰ نقطه هر شیء object_last_seen = {} object_id_counter = 0 # برای یادگیری real-time knn = KNeighborsClassifier(n_neighbors=3) features_set = [] labels_set = [] frame_count = 0 learning_interval = 30 def apply_noise_reduction(mask): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2) mask = cv2.dilate(mask, kernel, iterations=1) return mask def get_centroid(x, y, w, h): return (int(x + w / 2), int(y + h / 2)) def calculate_direction(trace): if len(trace) < 2: return "-" dx = trace[-1][0] - trace[0][0] dy = trace[-1][1] - trace[0][1] if abs(dx) > abs(dy): return "چپ" if dx < 0 else "راست" else: return "بالا" if dy < 0 else "پایین" def calculate_speed(trace, duration): if len(trace) < 2 or duration == 0: return 0 dist = np.linalg.norm(np.array(trace[-1]) - np.array(trace[0])) return dist / duration def count_direction_changes(trace): changes = 0 for i in range(2, len(trace)): dx1 = trace[i-1][0] - trace[i-2][0] dx2 = trace[i][0] - trace[i-1][0] if dx1 * dx2 < 0: # تغییر جهت افقی changes += 1 return changes while True: ret, frame = cap.read() if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) fg_mask = back_sub.apply(frame) fg_mask = apply_noise_reduction(fg_mask) contours, _ = cv2.findContours(fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) current_ids = [] predicted = 1 # مقدار پیش‌فرض برای پیش‌بینی (در صورتی که پیش‌بینی انجام نشود) for cnt in contours: area = cv2.contourArea(cnt) if area < 150: continue x, y, w, h = cv2.boundingRect(cnt) centroid = get_centroid(x, y, w, h) # شناسایی یا ایجاد شناسه جدید matched_id = None for oid, trace in object_traces.items(): if np.linalg.norm(np.array(trace[-1]) - np.array(centroid)) < 50: matched_id = oid break if matched_id is None: matched_id = object_id_counter object_id_counter += 1 object_traces[matched_id].append(centroid) object_last_seen[matched_id] = time.time() current_ids.append(matched_id) trace = object_traces[matched_id] duration = time.time() - object_last_seen[matched_id] + 0.001 speed = calculate_speed(trace, duration) direction = calculate_direction(trace) direction_changes = count_direction_changes(trace) total_move = sum(np.linalg.norm(np.array(trace[i]) - np.array(trace[i-1])) for i in range(1, len(trace))) # ویژگی برای مدل feature = [w, h, centroid[0], centroid[1], area, speed, direction_changes] label = 1 # کلاس پیش‌فرض: عادی # برچسب‌گذاری خودکار ساده: if speed > 100 or direction_changes > 4: label = 2 # مشکوک features_set.append(feature) labels_set.append(label) # آموزش مدل فقط زمانی که داده‌های کافی وجود داشته باشد if len(features_set) > 10 and frame_count % learning_interval == 0: knn.fit(features_set, labels_set) print("مدل به‌روزرسانی شد.") # فقط پیش‌بینی بعد از آموزش if len(features_set) > 10: predicted = knn.predict([feature])[0] # رسم اطلاعات روی فریم cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0) if label == 1 else (0, 0, 255), 2) cv2.circle(frame, centroid, 4, (255, 255, 255), -1) cv2.putText(frame, f"ID: {matched_id} | جهت: {direction} | سرعت: {int(speed)}", (x, y - 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1) cv2.putText(frame, f"رفتار: {'عادی' if predicted == 1 else 'مشکوک'}", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1) frame_count += 1 # حذف آی‌دی‌های قدیمی for oid in list(object_last_seen): if time.time() - object_last_seen[oid] > 2: object_traces.pop(oid, None) object_last_seen.pop(oid, None) cv2.imshow("هوش رفتاری", frame) if cv2.waitKey(1) & 0xFF == 27: break cap.release() cv2.destroyAllWindows()