import cv2 import numpy as np import torch import torchvision.transforms as transforms from torchvision.models import resnet18 from torch.nn.functional import cosine_similarity # Use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Feature extractor using pretrained ResNet18 class VisualFeatureExtractor: def __init__(self): model = resnet18(pretrained=True) self.model = torch.nn.Sequential(*list(model.children())[:-1]).to(device).eval() self.transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((224, 224)), transforms.ToTensor() ]) def extract(self, image): try: tensor = self.transform(image).unsqueeze(0).to(device) with torch.no_grad(): features = self.model(tensor).squeeze() return features / features.norm() except: return None # Memory system for object identity class ObjectMemory: def __init__(self): self.memory = {} # id: feature_vector self.next_id = 1 def compare(self, feat, threshold=0.9): best_id, best_sim = None, 0.0 for obj_id, stored_feat in self.memory.items(): sim = cosine_similarity(feat, stored_feat, dim=0).item() if sim > best_sim and sim > threshold: best_id, best_sim = obj_id, sim return best_id, best_sim def memorize(self, feat): obj_id = self.next_id self.memory[obj_id] = feat self.next_id += 1 return obj_id # Main application def main(): cap = cv2.VideoCapture(0) fgbg = cv2.createBackgroundSubtractorMOG2() extractor = VisualFeatureExtractor() memory = ObjectMemory() while True: ret, frame = cap.read() if not ret: break fgmask = fgbg.apply(frame) _, thresh = cv2.threshold(fgmask, 200, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: if cv2.contourArea(cnt) < 1000: continue x, y, w, h = cv2.boundingRect(cnt) crop = frame[y:y+h, x:x+w] feat = extractor.extract(crop) if feat is None: continue matched_id, similarity = memory.compare(feat) if matched_id is not None: label = f"Known ID {matched_id} ({similarity*100:.1f}%)" color = (0, 255, 0) else: new_id = memory.memorize(feat) label = f"New Object (ID {new_id})" color = (0, 0, 255) cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2) cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) cv2.imshow("AI Object Memory", frame) if cv2.waitKey(1) & 0xFF == 27: # ESC break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": main()