import cv2 import numpy as np import torch # AI-based Visual Memory class ObjectMemory: def __init__(self): self.memory = {} # object_id: feature_vector self.next_id = 1 def extract_features(self, crop): try: crop_resized = cv2.resize(crop, (32, 32)) # Resize to fixed size crop_tensor = torch.tensor(crop_resized.transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0) / 255.0 return crop_tensor.view(-1) # Flatten except: return None def memorize(self, crop): vec = self.extract_features(crop) if vec is None: return None obj_id = self.next_id self.memory[obj_id] = vec self.next_id += 1 return obj_id def find_match(self, crop, threshold=0.95): vec = self.extract_features(crop) if vec is None: return None, 0.0 best_id = None best_sim = 0.0 for obj_id, stored_vec in self.memory.items(): sim = torch.cosine_similarity(vec, stored_vec, dim=0).item() if sim > best_sim and sim > threshold: best_sim = sim best_id = obj_id return best_id, best_sim # Video object tracker def main(): cap = cv2.VideoCapture(0) # Use webcam; change to "video.mp4" for a file fgbg = cv2.createBackgroundSubtractorMOG2() memory = ObjectMemory() while True: ret, frame = cap.read() if not ret: break fgmask = fgbg.apply(frame) _, thresh = cv2.threshold(fgmask, 200, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: if cv2.contourArea(cnt) < 800: continue x, y, w, h = cv2.boundingRect(cnt) crop = frame[y:y+h, x:x+w] match_id, sim = memory.find_match(crop) if match_id is not None: label = f"Seen before (ID {match_id})" color = (0, 255, 0) else: new_id = memory.memorize(crop) label = f"New Object (ID {new_id})" color = (255, 0, 0) cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) cv2.imshow("Object Tracker with Memory", frame) if cv2.waitKey(1) & 0xFF == 27: # ESC to quit break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": main()