import cv2 import torch import torch.nn as nn import torch.optim as optim import numpy as np # ======== AI MODEL (PyTorch) ======== device = torch.device("cpu") label_map = {"Idle": 0, "Normal": 1, "Erratic": 2} reverse_label = {v: k for k, v in label_map.items()} class BehaviorAI(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 8), nn.ReLU(), nn.Linear(8, 3) ) self.loss_fn = nn.CrossEntropyLoss() self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) def forward(self, x): return self.model(x) def predict_behavior(self, features): self.model.eval() with torch.no_grad(): x = torch.tensor([features], dtype=torch.float32).to(device) logits = self.model(x) pred = torch.argmax(logits, dim=-1).item() return reverse_label[pred] def learn_from(self, features, label): self.model.train() x = torch.tensor([features], dtype=torch.float32).to(device) y = torch.tensor([label_map[label]], dtype=torch.long).to(device) logits = self.model(x) loss = self.loss_fn(logits, y) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ======== FEATURE EXTRACTION ======== def extract_features(trace): if len(trace) < 2: return [0, 0, 0, 0] dx = trace[-1][0] - trace[0][0] dy = trace[-1][1] - trace[0][1] speeds = [] directions = [] for i in range(1, len(trace)): x1, y1 = trace[i-1] x2, y2 = trace[i] dist = np.linalg.norm([x2 - x1, y2 - y1]) speeds.append(dist) directions.append(np.arctan2(y2 - y1, x2 - x1)) avg_speed = np.mean(speeds) direction_changes = np.sum(np.abs(np.diff(directions))) return [dx, dy, avg_speed, direction_changes] # ======== MAIN REAL-TIME TRACKING ======== cap = cv2.VideoCapture(0) # یا 'video.mp4' برای فایل bg_subtractor = cv2.createBackgroundSubtractorMOG2() traces = {} next_id = 0 ai = BehaviorAI() while True: ret, frame = cap.read() if not ret: break fgmask = bg_subtractor.apply(frame) contours, _ = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) current_positions = [] for cnt in contours: if cv2.contourArea(cnt) < 500: continue x, y, w, h = cv2.boundingRect(cnt) cx, cy = x + w // 2, y + h // 2 current_positions.append((cx, cy)) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) new_traces = {} matched_ids = set() for cx, cy in current_positions: min_dist = float('inf') matched_id = None for id, trace in traces.items(): if len(trace) == 0: continue prev_x, prev_y = trace[-1] dist = np.linalg.norm([cx - prev_x, cy - prev_y]) if dist < 50 and id not in matched_ids: min_dist = dist matched_id = id if matched_id is None: matched_id = next_id next_id += 1 new_traces[matched_id] = [] else: new_traces[matched_id] = traces[matched_id] new_traces[matched_id].append((cx, cy)) matched_ids.add(matched_id) traces = new_traces for id, trace in traces.items(): if len(trace) >= 2: for i in range(1, len(trace)): cv2.line(frame, trace[i-1], trace[i], (255, 0, 0), 2) features = extract_features(trace) behavior = ai.predict_behavior(features) if len(trace) >= 10: if features[2] < 2: label = "Idle" elif features[3] > 4: label = "Erratic" else: label = "Normal" ai.learn_from(features, label) cv2.putText(frame, f"ID:{id} AI:{behavior}", trace[-1], cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1) cv2.imshow("Real-Time Tracker with AI", frame) if cv2.waitKey(1) == 27: # ESC break cap.release() cv2.destroyAllWindows()